精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(2x+
π
3
B、f(x)=2sin(x+
π
3
C、f(x)=2sin(2x+
π
6
D、f(x)=2sin(x+
π
6
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据图象确定A,ω 和φ的值即可求函数的解析式
解答: 解:由图象知函数的最大值为2,即A=2,
函数的周期T=4(
6
-
3
)=2π=
ω

解得ω=1,即f(x)=2sin(x+φ),
由五点对应法知
3
+φ=π,
解得φ=
π
3

故f(x)=2sin(x+
π
3
),
故选:B
点评:本题主要考查函数解析式的求解,根据条件确定A,ω 和φ的值是解决本题的关键.要要求熟练掌握五点对应法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,则实数m的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个圆的圆心在直线y=2x上,在y轴上截得的弦的长度等于2,且与直线x-y+
2
=0相切,则这个圆的方程可能是(  )
A、x2+y2-x-2y=0
B、x2+y2+2x+4y=0
C、x2+y2-2=0
D、x2+y2-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项a1及公差d都是整数,且前n项和为Sn,若a1>1,a4>3,S3≤9,则数列{an}的通项公式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)在(-1,1)上有定义f(
1
2
)=1
,且满足x,y∈(-1,1)有f(x)-f(y)=f(
x-y
1-xy
)
,对数列x1=
1
2
,xn+1=
2xn
x
2
n

(1)证明:f(x)在(-1,1)上为奇函数;
(2)求f(xn)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=Asin(ωx+φ )(其中A>0,ω>0,-π<φ≤π)在x=
π
6
处取得最大值2,其图象与x轴的相邻两个交点的距离为
π
2

(1)求f(x)的解析式;
(2)求函数g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示的框图,建立打印数列的递推公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20.3,0.32,log20.3按从小到大的顺序排列为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P为直线4x-y-1=0上一点,P到直线2x+y+5=0的距离与原点到这条直线的距离相等,则点P的坐标是
 

查看答案和解析>>

同步练习册答案