【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2017年1月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( )
A.月接待游客逐月增加
B.年接待游客量逐年减少
C.各年的月接待游客量高峰期大致在6、7月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性较小,变化比较稳定
科目:高中数学 来源: 题型:
【题目】已知函数()在上至少存在两个不同的,满足,且在上具有单调性,点和直线分别为图象的一个对称中心和一条对称轴,则下列命题中正确的是( )
A.的最小正周期为
B.
C.在上是减函数
D.将图象上每一点的横坐标伸长为原来的2倍(纵坐标不变),得到的图象,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“北京八分钟”在韩国平昌冬奥会惊艳亮相,冬奥会正式进入了北京周期,全社会对冬奥会的热情空前高涨.
(1)为迎接冬奥会,某社区积极推动冬奥会项目在社区青少年中的普及,并统计了近五年来本社区冬奥项目青少年爱好者的人数(单位:人)与时间(单位:年),列表如下:
依据表格给出的数据,是否可用线性回归模型拟合与的关系,请计算相关系数并加以说明(计算结果精确到0.01).
(若,则线性相关程度很高,可用线性回归模型拟合)
附:相关系数公式,参考数据.
(2)某冰雪运动用品专营店为吸引广大冰雪爱好者,特推出两种促销方案.
方案一:每满600元可减100元;
方案二:金额超过600元可抽奖三次,每次中奖的概率同为 ,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折. v
两位顾客都购买了1050元的产品,并且都选择第二种优惠方案,求至少有一名顾客比选择方案一更优惠的概率;
②如果你打算购买1000元的冰雪运动用品,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】华罗庚中学高二排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:)分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:)分别是:170、159、162、173、181、165、176、168、178、179.
(1)请根据两队身高数据作出茎叶图,并分析指出哪个队的身高数据方差较小(无需计算)以及排球队的身高数据的中位数与众数;
(2)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】丑橘是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的丑橘,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:
产地 | |||||
批发价格 | 150 | 160 | 140 | 155 | 170 |
市场份额 |
市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.
(1)从该地批发市场销售的丑橘中随机抽取一箱,估计该箱丑橘价格低于160元的概率;
(2)按市场份额进行分层抽样,随机抽取20箱丑橘进行检验,①从产地,共抽取箱,求的值;②从这箱中随机抽取三箱进行等级检验,随机变量表示来自产地的箱数,求的分布列和数学期望.
(3)产地的丑橘明年将进入该地市场,定价160元/箱,并占有一定市场份额,原有五个产地的丑橘价格不变,所占市场份额之比不变(不考虑其他因素).设今年丑橘的平均批发价为每箱元,明年丑橘的平均批发价为每箱元,比较,的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)若(其中)
(ⅰ)求实数t的取值范围;
(ⅱ)证明:;
(2)是否存在实数a,使得在区间内恒成立,且关于x的方程在内有唯一解?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的有______.
①回归直线恒过点,且至少过一个样本点;
②根据列列联表中的数据计算得出,而,则有的把握认为两个分类变量有关系,即有的可能性使得“两个分类变量有关系”的推断出现错误;
③是用来判断两个分类变量是否相关的随机变量,当的值很小时可以推断两类变量不相关;
④某项测量结果服从正态分布,则,则.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com