精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2
3
sin
x
4
,2),
n
=(cos
x
4
,cos2
x
4
)

(1)若
m
n
=2
,求cos(x+
π
3
)
的值;
(2)记f(x)=
m
n
,在△ABC中,角A、B、C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.
分析:(1)利用向量的数量积以及二倍角公式两角和的正弦函数化为一个角的一个三角函数的形式,求出sin(
x
2
+
π
6
),然后求出cos(x+
π
3
)
的值.
(2)通过(2a-c)cosB=bcosC利用正弦定理,求出B的值,通过三角形的内角和,求出A的范围,然后求出f(A)的取值范围.
解答:解:(1)
m
n
=2
3
sin
x
4
cos
x
4
+2cos2
x
4
=
3
sin
x
2
+cos
x
2
+1

=2sin(
x
2
+
π
6
)+1

m
n
=2

∴sin(
x
2
+
π
6
)=
1
2

cos(x+
π
3
)=1-2sin2
x
2
+
π
6
)=
1
2

(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,
∴2sinAcosB=sin(B+C).
∵A+B+C=π,∴sin(B+C)sinA,且sinA≠0,
∴cosB=
1
2
,B=
π
3

∴0<A<
3
.∴
π
6
A
2
+
π
6
π
2
1
2
<sin(
A
2
+
π
6
)  <1

又∵f(x)=
m
n
=2sin(
x
2
+
π
6
)+1
,∴f(A)=2sin(
A
2
+
π
6
)+1

故f(A)的取值范围是(2,3)
点评:本题是中档题,考查向量的数量积,三角函数的化简求值,正弦定理的应用,根据角的范围求出函数值的范围,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知向量
m
=(2b-c,cosC),
n
=(a,cosA),且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)求cosB+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,已知向量
m
=(c-2b,a),
n
=(cosA,cosC)且
m
n

(1)求角A的大小;
(2)若
AB
AC
=4,求边BC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(
3
,-1),(
m
-
n
)⊥
m
,且A为锐角.
(Ⅰ) 求角A的大小;
(Ⅱ) 求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1),
n
=(cosx,3)

(1)当
m
n
时,求
sinx+cosx
3sinx-2cosx
的值;
(2)设函数f(x)=(
m
+
n
)•
m
,求f(x)的单调增区间;
(3)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B),对于(2)中的函数f(x),求f(B+
π
8
)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湛江模拟)已知向量
m
=(x,2),向量
n
=(1,-1),若
m
n
,则x=
2
2

查看答案和解析>>

同步练习册答案