精英家教网 > 高中数学 > 题目详情

【题目】函数的图象如图所示,先将函数图象上所有点的横坐标变为原来的6倍,纵坐标不变,再将所得函数的图象向左平移个单位长度,得到函数的图象,下列结论正确的是(

A.函数是奇函数B.函数在区间上是增函数

C.函数图象关于对称D.函数图象关于直线对称

【答案】D

【解析】

先由三角函数的图像求出,然后结合三角函数图像的平移变换及伸缩变换求出,再结合三角函数图像的性质逐一判断即可得解.

解:由图得函数的周期

所以.

因为函数的图象过点

所以

所以

所以.

因为

所以

所以.

先将函数的图象上所有点的横坐标变为原来的6倍,纵坐标不变,得到的图象,再将所得函数的图象向左平移个单位长度,得到.

对于A选项,因为函数为偶函数,故A错误;

对于B选项,令,则

,故B错误;

对于C选项,令,则,所以函数的对称中心为,故C错误;

对于D选项,令,则,所以函数的对称轴为,当时,有,即D正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1,已知等边的边长为3,点分别是边上的点,且.如图2,将沿折起到的位置.

1)求证:平面平面

2)给出三个条件:①;②二面角大小为;③.在这三个条件中任选一个,补充在下面问题的条件中,并作答:在线段上是否存在一点,使直线与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由.注:如果多个条件分别解答,按第一个解答给分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱,底面为等腰梯形,,侧面底面.

1)在侧面中能否作一条直线使其与平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由;

2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,.

1)求证:

2)若点 上一点,且,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点.把沿翻折,使得平面平面

(Ⅰ)求证:

(Ⅱ)求所在直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,已知过点且斜率为1的直线与曲线是参数)交于两点,与直线交于点.

1)求曲线的普通方程与直线的直角坐标方程;

2)若的中点为,比较的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最小值

(Ⅲ)若, 求使方程有唯一解的的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,是自然对数的底数.

1)若曲线在点处的切线为,求的值;

2)求函数的极大值;

3)设函数,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机取一个由01构成的8位数,它的偶数位数字之和与奇数位数字之和相等的概率为____________ .

查看答案和解析>>

同步练习册答案