精英家教网 > 高中数学 > 题目详情
20.已知曲线C上的动点P到两定点O(0,0),A(3,0)的距离之比为$\frac{1}{2}$.
(1)求曲线C的方程;
(2)若直线l的方程为y=kx-2,其中k<-2,且直线l交曲线C于A,B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

分析 (1)设P(x,y),由条件运用两点的距离公式,化简整理,即可得到所求轨迹方程;
(2)联立直线方程和圆的方程,运用韦达定理和向量的数量积的坐标表示,结合基本不等式,即可得到最小值.

解答 解:(1)设P(x,y),由题意可得$\frac{|PO|}{|PA|}$=$\frac{1}{2}$,
即为2$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{(x-3)^{2}+{y}^{2}}$,
化简可得x2+y2+2x-3=0,
曲线C的方程为圆(x+1)2+y2=4;
(2)将直线y=kx-2代入圆的方程,
可得(1+k2)x2+(2-4k)x+1=0,
判别式为(2-4k)2-4(1+k2)>0,由k<-2,显然成立;
设A(x1,y1),B(x2,y2),
可得x1+x2=$\frac{4k-2}{1+{k}^{2}}$,x1x2=$\frac{1}{1+{k}^{2}}$,
即有y1y2=(kx1-2)(kx2-2)
=k2x1x2-2k(x1+x2)+4=$\frac{4+4k-3{k}^{2}}{1+{k}^{2}}$,
则$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{5+4k-3{k}^{2}}{1+{k}^{2}}$
=-3+$\frac{4(2+k)}{1+{k}^{2}}$,可令2+k=t(t<0),
可得$\frac{4(2+k)}{1+{k}^{2}}$=$\frac{4t}{{t}^{2}-4t+5}$=$\frac{4}{t+\frac{5}{t}-4}$,
由t+$\frac{5}{t}$≤-2$\sqrt{t•\frac{5}{t}}$=-2$\sqrt{5}$.
当且仅当t=-$\sqrt{5}$,即k=-2-$\sqrt{5}$,等号成立.
即有$\frac{4}{t+\frac{5}{t}-4}$≥$\frac{4}{-2\sqrt{5}-4}$=4-2$\sqrt{5}$,
则$\overrightarrow{OA}$•$\overrightarrow{OB}$≥1-2$\sqrt{5}$.
故当k=-2-$\sqrt{5}$时,$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最小值1-2$\sqrt{5}$.

点评 本题考查曲线方程的求法,注意运用代入法,考查直线和圆的位置关系,注意联立直线和圆的方程,运用韦达定理,同时考查向量数量积的坐标表示,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在数列{an}中a1=1,且an=$\frac{n-1}{n+1}$an-1(n≥2),求αn与sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线C1的极坐标方程为ρ2+2ρcosθ-3=0,直线C2的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=k+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),若两曲线有公共点,则k的取值范围是(  )
A.k∈RB.k>4C.k<-4D.-4≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为(  )
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,若AD=PA=a,$AB=\sqrt{2}a$.
(1)在PC上是否存在一点Q,使得AQ∥平面MND?若存在,求出该点的位置,若不存在,请说明理由;
(理)(2)求二面角N-MD-C大小.
(文)(2)求三棱锥P-MND的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}中,数列{an}的通项公式${a_n}=\frac{1}{n(n+1)}$,则该数列的前9项之和等于$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列五个命题:
①命题?x∈R,cosx>0的否定是?x∈R,cosx≤0;
②函数$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的单调递增区间是(-∞,0);
③已知命题p:?x∈R,sin(π-x)=sinx;命题q:α,β均是第一象限的角,且α>β,则sinα>sinβ,则p∧?q是真命题;
④定义在R上的函数f(x)对于任意x的都有$f(x-2)=-\frac{4}{f(x)}$,则f(x)为周期函数;
⑤命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题是真命题.
则其正确的命题为①③④.(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(理) 已知数列{an}的前n项和为Sn,且an=$\frac{1}{(n+1)(n+2)}$,若Sn<t对任意n∈N*都成立,则t的取值范围为$t≥\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.按要求作答:若A(-2,3),B(3,-2),C($\frac{1}{2}$,m)三点共线,求:
(1)m的值;
(2)直线AC的方程(要求写成一般式).

查看答案和解析>>

同步练习册答案