【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2 , a4的等差中项. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anlog2an , 其前n项和为Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)对于n≥2恒成立,求实数m的取值范围.
【答案】解:(Ⅰ)设等比数列的{an}首项为a1 , 公比为q. 由题意可知: ,
解得: 或 ,
∵数列为单调递增的等比数列,
∴an=2n;
(Ⅱ)bn=anlog2an =n2n ,
∴Sn=b1+b2+…+bn=121+222+…+n2n , ①
2Sn=122+223+324+…+n2n+1 , ②
① ﹣②,得:﹣Sn=2+22+23+…+2n﹣n2n+1
= ﹣n2n+1=2n+1﹣2﹣n2n+1 ,
∴Sn=(n﹣1)2n+1+2,
若(n﹣1)2≤m(Sn﹣n﹣1)对于n≥2恒成立,
则(n﹣1)2≤m[(n﹣1)2n+1+2﹣n﹣1]=m[(n﹣1)2n+1+1﹣n]对于n≥2恒成立,
即 = 对于n≥2恒成立,
∵ = ,
∴数列{ }为递减数列,
则当n=2时, 的最大值为 .
∴m≥ .
则实数m得取值范围为[ ,+∞)
【解析】(Ⅰ)设出等比数列{an}的首项和公比,由已知列式求得首项和公比,则数列{an}的通项公式可求;(Ⅱ)把(Ⅰ)中求得的通项公式代入bn=anlog2an , 利用错位相减法求得Sn , 代入(n﹣1)2≤m(Sn﹣n﹣1),分离变量m,由单调性求得最值得答案.
【考点精析】本题主要考查了对数的运算性质和数列的前n项和的相关知识点,需要掌握①加法:②减法:③数乘:④⑤;数列{an}的前n项和sn与通项an的关系才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为 ,且过点D(2,0).
(1)求该椭圆的标准方程;
(2)设点 ,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,小区的两个出入口设置在点A及点C处,且小区里有一条平行于BO的小路CD,已知某人从C沿CD走到D用了10分钟,从D沿DA走到A用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA的长(精确到1米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于P点.
(1)求P点的轨迹C的方程;
(2)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,
若kEGkFH=-,求证:四边形EFGH的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com