精英家教网 > 高中数学 > 题目详情

【题目】1)已知是虚数单位)是关于的方程的根,,求的值;

2)已知是虚数单位)是关于的方程的一个根,,求的值.

【答案】1;(2.

【解析】

1)将代入方程,将等式左边的复数化为一般形式, 利用复数的虚部和实部均为零得出关于的方程组,解出这两个未知数,即可求出的值;

2)解法一:将代入方程,将等式左边的复数化为一般形式, 利用复数的虚部和实部均为零得出关于的方程组,解出这两个未知数,即可求出的值;

解法二:由题意可知,关于的二次方程的两根分别为,利用韦达定理可求出的值,由此可计算出的值.

1)由已知得

,解得

2)解法一:由已知得

解法二:是实系数方程的根,也是此方程的根,

因此,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆

(1)若椭圆的离心率为,求的值;

(2)若过点任作一条直线与椭圆交于不同的两点,在轴上是否存在点,使得, 若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调递增区间;

(2)若函数有两个极值点恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线lxy2=0,抛物线Cy2=2pxp0.

1)若直线l过抛物线C的焦点,求抛物线C的方程;

2)已知抛物线C上存在关于直线l对称的相异两点PQ.

求证:线段PQ的中点坐标为

p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线处的切线方程;

2)求函数的单调区间;

3)若函数在区间内有且只有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一般来说,一个班级的学生学号是从1 开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3、21、17、19、36、8、32、24,则该班学生总数最可能为( )

A. 39人B. 49人C. 59人D. 超过59人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):

分组

频数

9

23

40

22

6

规定:实心球投掷距离在之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值,将频率视为概率.

(1)求,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.

(2)现在从实心球投掷距离在之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】位同学分成组,参加个不同的志愿者活动,每组至少人,其中甲乙人不能分在同一组,则不同的分配方案有_____种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列均为递增数列,的前项和为的前项和为.且满足,则下列说法正确的有( )

A.B.C.D.

查看答案和解析>>

同步练习册答案