精英家教网 > 高中数学 > 题目详情
(本题14分)如图,五面体.底面是正三角形,四边形是矩形二面角为直二面角.
(1)上运动,当在何处时,有∥平面,并且说明理由;
(2)当∥平面时,求二面角余弦值.
(Ⅰ)略  (Ⅱ)  
(Ⅰ)当中点时,有∥平面.…1分 

证明:连结连结
∵四边形是矩形 ∴中点
∥平面,且平面,
平面, ----5分
的中点. --6分
(Ⅱ)建立空间直角坐标系图所示,
,,,
, ------------8分
所以
为平面的法向量,
则有,

,可得平面的一个
法向量为,              ----------------11分
而平面的法向量为,   ---------------------------12
所以
所以二面角余弦值--------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱中,,点N是的中点,求二面角的平面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三棱锥的一个侧面的面积与底面积之比为2∶3,则这个三棱锥的侧面和底面所成二面角的度数为_________. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设DE是△ABC的边AB上的两点,已知∠ACD=∠BCEAC=14,AD=7,AB=28,CE=12.求BC

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直棱柱中,AA1=2,EF分别是ACAB的中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为,则截面的面积为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N.
(Ⅰ)求证:EM∥平面A1B1C1D1
(Ⅱ)求二面角B—A1N—B1的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理)如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

记动点P是棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上一点,记
D1P
D1B
.当∠APC为钝角时,则λ的取值范围为(  )
A.(0,1)B.(
1
3
,1)
C.(0,
1
3
)
D.(1,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1上的点,则B1D1与AE所成的角(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案