【题目】已知函数.
(1)若,求函数的图像在点处的切线方程;
(2)若函数有两个极值点,且,求证: .
【答案】(1) (2)见解析
【解析】试题分析:(1)根据导数几何意义得切线斜率等于,再根据点斜式求切线方程(2)先分离得,利用导数可得在单调递增,在单调递减,因此,再根据单调性得,最后根据零点存在定理可得a范围,根据a的取值范围可证不等式
试题解析:(1)由已知条件, ,当时, ,
,当时, ,所以所求切线方程为
(2)由已知条件可得有两个相异实根,
令,则,
1)若,则, 单调递增, 不可能有两根;
2)若,
得,可知在上单调递增,在上单调递减,
令解得,
由有,
由有
从而时函数有两个极值点
当变化时, , 的变化情况如下表
单调递减 | 单调递增 | 单调递减 |
因为,所以, 在区间上单调递增,
另解:由已知可得,则,令,
则,可知函数在单调递增,在单调递减,
若有两个根,则可得,
当时, ,
所以在区间上单调递增,
所以
科目:高中数学 来源: 题型:
【题目】在锐角中, 、、分别为角、、所对的边,且.
()确定角的大小.
()若,且的面积为,求的值.
【答案】();()
【解析】试题分析:(1)由正弦定理可知, ,所以;(2)由题意, , ,得到.
试题解析:
(),∴,
∵,∴.
(), ,
,
∴.
【题型】解答题
【结束】
17
【题目】已知等差数列满足:,.的前n项和为.
(Ⅰ)求 及;
(Ⅱ)若 ,(),求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:
①与所成角的正切值是;
②;
③是;
④平面平面;
⑤直线与平面所成角为30°.
其中正确的有________.(填写你认为正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,底面ABC为正三角形,底面ABC,,点在线段上,平面平面.
(1)请指出点的位置,并给出证明;
(2)若,求与平面ABE夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新冠肺炎疫情期间,为了减少外出聚集,“线上买菜”受追捧.某电商平台在地区随机抽取了位居民进行调研,获得了他们每个人近七天“线上买菜”消费总金额(单位:元),整理得到如图所示频率分布直方图.
(1)求的值;
(2)从“线上买菜”消费总金额不低于元的被调研居民中,随机抽取位给予奖品,求这位“线上买菜”消费总金额均低于元的概率;
(3)若地区有万居民,该平台为了促进消费,拟对消费总金额不到平均水平一半的居民投放每人元的电子补贴.假设每组中的数据用该组区间的中点值代替,试根据上述频率分布直方图,估计该平台在地区拟投放的电子补贴总金额.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,侧棱,底面是直角梯形,其中,,,.
(1)求证:平面平面.
(2)试问在棱上是否存在点,使得面面,若存在,试指出点的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图.
(1)求频率分布直方图中a的值;
(2)估计总体中成绩落在[50,60)中的学生人数;
(3)根据频率分布直方图估计20名学生数学考试成绩的众数,平均数;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com