精英家教网 > 高中数学 > 题目详情
14.若角α的终边过点(1,-2),则cos(α+$\frac{π}{2}$)=$\frac{2\sqrt{5}}{5}$.

分析 由条件利用任意角的三角函数的定义、诱导公式,求得cos(α+$\frac{π}{2}$)的值.

解答 解:角α的终边过点(1,-2),则cos(α+$\frac{π}{2}$)=-sinα=-$\frac{-2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$,
故答案为:$\frac{2\sqrt{5}}{5}$.

点评 本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若实数a≥0,b≥1且$\frac{{{4^a}+{4^b}}}{{{2^{a+1}}+{2^{b+2}}-1}}=1$,则2a+2b+1的取值范围为[7,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.求值:$\frac{{cos{{40}°}+sin{{50}°}(1+\sqrt{3}tan{{10}°})}}{{sin{{70}°}\sqrt{1+cos{{40}°}}}}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移$\frac{π}{3}$个单位所得的图象与f(x)的图象向右平移$\frac{π}{6}$个单位所得的图象重合,则ω的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\left\{\begin{array}{l}{(x+1)^{2},x<1}\\{4-\sqrt{x-1},x≥1}\end{array}\right.$,求使得f(a)=1的自变量a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$f(x)=\sqrt{1-x}+1$的值域是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C:x2+y2-2ax-2(a-1)y-1+2a=0(a≠1)对所有的a∈R且a≠1总存在直线l与圆C相切,则直线l的方程为y=-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知直线PM∥QN,PM,QN分别与平面α交于M,N,直线PQ交平面α于A点.求证:M,N,A三点在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax(a>0,且a≠1)在[-1,1]上的函数值总小于2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案