精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= 的定义域是;值域是

【答案】(﹣∞,2)∪(2,+∞);(﹣∞,3)∪(3,+∞)
【解析】解:由题意:分母不能为0,即x﹣2≠0, 解得:x≠2,
∴函数的定义域为(﹣∞,2)∪(2,+∞);
函数f(x)= 化简可得:f(x)= =3+
≠0
∴f(x)≠3
∴函数的值域为(﹣∞,3)∪(3,+∞).
所以答案是:(﹣∞,2)∪(2,+∞);(﹣∞,3)∪(3,+∞).
【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).以原点为极点, 轴的正半轴为极轴建立极坐标系,点的极坐标方程为.

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线与曲线的两个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+2.
(1)求f(x)单调区间
(2)求f(x)在区间[ ,3]上的最大值和最小值;
(3)若g(x)=f(x)﹣mx在[2,4]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直于圆所在的平面, 的重心.

(1)求证:平面平面

(2)若,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中,且为常数).

(1)当时,求函数的单调区间;

(2)若对于任意的,都有成立,求的取值范围;

(3)若方程上有且只有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是,女生闯过一至四关的概率依次是.

(Ⅰ)求男生甲闯关失败的概率;

(Ⅱ)设表示四人冲关小组闯关成功的人数,求随机变量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.

(1)如果按照性别比例分层抽样,可得到多少个不同的样本?(写出算式即可,不必计算出结果)

(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:

若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,并且内切于定圆.

(1)求动圆圆心的轨迹方程;

(2)若上存在两个点,(1)中曲线上有两个点,并且三点共线, 三点共线, ,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列几种说法: ①若logablog3a=1,则b=3;
②若a+a1=3,则a﹣a1=
③f(x)=log(x+ 为奇函数;
④f(x)= 为定义域内的减函数;
⑤若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且f(2)=1,则f(x)=log x,其中说法正确的序号为

查看答案和解析>>

同步练习册答案