精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=|sin(ωx+ )|(ω>1)在区间[π, π]上单调递减,则实数ω的取值范围是

【答案】[ , ]
【解析】解:∵函数f(x)=|sin(ωx+ )|(ω>0)在[π, π]上单调递减,

∴T= ,即ω≤2.

∵ω>0,根据函数y=|sinx|的周期为π,减区间为[kπ+ ,kπ+π],k∈z,

由题意可得区间[π, ]内的x值满足 kπ+ ≤ωx+ ≤kπ+π,k∈z,

即ωπ+ ≥kπ+ ,且ω + ≤kπ+π,k∈z.

解得k+ ≤ω≤ (k+ ),k∈z.

求得:当k=0时, ≤ω≤ ,不符合题意;当k=1时, ≤ω≤ ;当k=2时, ≤ω≤ ,不符合题意.

综上可得, ≤ω≤

所以答案是:[ ].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;
(Ⅱ)若函数f(x)的图象的一条对称轴为 ,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若| |=1,| |=m,| + |=2.
(1)若| +2 |=3,求实数m的值;
(2)若 + 的夹角为 ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题
(1)已知函数f(x)=2x+ (x>0),证明函数f(x)在(0, )上单调递减,并写出函数f(x)的单调递增区间;
(2)记函数g(x)=a|x|+2ax(a>1) ①若a=4,解关于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx图象与直线x﹣y﹣4=0相切于(1,f(1))
(1)求实数a,b的值;
(2)若方程f(x)=m﹣7x有三个解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin2x的图象向左平移 个单位长度,则平移后的图象的对称轴为(
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,BC= ,AB=CC1=2,∠BCC1= ,点E在棱BB1上.

(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1 , 试确定λ的值,使得二面角A﹣C1E﹣C的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,x2+1>m;命题q:指数函数f(x)=(3﹣m)x是增函数.若“p∧q”为假命题且“p∨q”为真命题,则实数m的取值范围为

查看答案和解析>>

同步练习册答案