【题目】已知函数 ,若m<n,且f(m)=f(n),则n﹣m的取值范围是( )
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)
【答案】A
【解析】解:作出函数f(x)的图象如图:
若m<n,且f(m)=f(n),
则当ln(x+1)=1时,得x+1=e,即x=e﹣1,
则满足0<n≤e﹣1,﹣2<m≤0,
则ln(n+1)= m+1,即m=2ln(n+1)﹣2,
则n﹣m=n+2﹣2ln(n+1),
设h(n)=n+2﹣2ln(n+1),0<n≤e﹣1
则h′(n)=1﹣ = = ,
当h′(x)>0得1<n≤e﹣1,
当h′(x)<0得0<n<1,
即当n=1时,函数h(n)取得最小值h(1)=1+2﹣2ln2=3﹣2ln2,
当n=0时,h(0)=2﹣2ln1=2,
当n=e﹣1时,h(e﹣1)=e﹣1+2﹣2ln(e﹣1+1)=1+e﹣2=e﹣1<2,
则3﹣2ln2≤h(n)<2,
即n﹣m的取值范围是[3﹣2ln2,2),
故选:A
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)求函数的单调区间;
(2)试问:函数图像上是否存在不同两点,使得在处的切线平行于直线,若存在,求出的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是 (t是参数)
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|= ,求直线的倾斜角α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利元.
(1)若便利店一天购进鲜奶瓶,求当天的利润(单位:元)关于当天鲜奶需求量(单位:瓶,)的函数解析式;
(2)便利店记录了天该鲜奶的日需求量(单位:瓶,)整理得下表:
日需求量 | ||||||
频数 |
若便利店一天购进瓶该鲜奶,以天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.
(Ⅰ)求全班人数及分数在[80,100]之间的频率;
(Ⅱ)现从分数在[80,100]之间的试卷中任取 3 份分析学生情况,设抽取的试卷分数在[90,100]的份数为X,求X的分布列和数学望期.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的条件.(填“充要条件、充分不必要条件、必要不充分条件、即不充分也不必要条件”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两地相距,货车从甲地匀速行驶到乙地,速度不得超过,已知货车每小时的运输成本(单位:圆)由可变本和固定组成组成,可变成本是速度平方的倍,固定成本为元.
(1)将全程匀速匀速成本(元)表示为速度的函数,并指出这个函数的定义域;
(2)若,为了使全程运输成本最小,货车应以多大的速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(sin( x+φ),1), =(1,cos( x+φ))(ω>0,0<φ< ),记函数f(x)=( + )( ﹣ ).若函数y=f(x)的周期为4,且经过点M(1, ).
(1)求ω的值;
(2)当﹣1≤x≤1时,求函数f(x)的最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com