精英家教网 > 高中数学 > 题目详情

若函数f(x)=sinωx+acosωx(ω>0)的图象关于点数学公式对称,且在数学公式
处函数有最小值,则a+ω的一个可能的取值是


  1. A.
    0
  2. B.
    3
  3. C.
    6
  4. D.
    9
D
分析:根据题意:相邻对称点与最小值之间可以相差T,也可以是T,不妨设为:,则T=,再由周期公式求得ω,然后由f()=0求和a,从而有a+ω求解.
解答:根据题意:
T=
所以ω=
∵f()=0
∴sin(4n+3)π+acos(4n+3)π=-a,
∴a=0,
∴a+ω=3(4n+3).
∴ω可以为9
故选D
点评:本题主要考查正余弦函数的对称点,对称轴与周期间的关系,即相邻的对称轴及对称点之间相差半个周期等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
6
)+sin(x-
π
6
)+2cos2
x
2
+a
(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)在[-
π
2
π
2
]
上的最大值与最小值之和为
3
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx-sinωx,sinωx)
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函数f(x)=
a
b
(λ为常数)的最小正周期为π.
(Ⅰ)求函数y=f(x)的图象的对称轴;
(Ⅱ)若函数y=f(x)的图象经过点(
π
4
,0)
,求函数y=f(x)在区间[0,
12
]
上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sin(
π
2
+B)=
2
5
5

(1)求tan2B的值;
(2)若cosA=
3
10
10
,c=10,求△ABC的面积;
(3)若函数f(x)=
4cos4x-2cos2x-1
cos2x
,求f(C)+sin2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值为正实数,集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定义A与B的差集:A-B={x|x∈A且x∉B}.设a,b,x均为整数,且x∈A.P(E)为x取自A-B的概率,P(F)为x取自A∩B的概率,写出a与b的二组值,使P(E)=
2
3
,P(F)=
1
3

(3)若函数f(t)中,a,b是(2)中a较大的一组,试写出f(t)在区间[n-
2
8
,n]上的最大值函数g(n)的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值为正实数,集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定义A与B的差集:A-B={x|x∈A且x∉B}.设a,b,x均为整数,且x∈A.P(E)为x取自A-B的概率,P(F)为x取自A∩B的概率,写出a与b的二组值,使P(E)=
2
3
,P(F)=
1
3

(3)若函数f(t)中,a,b是(2)中a较大的一组,试写出f(t)在区间[n-
2
8
,n]上的最大值函数g(n)的表达式.

查看答案和解析>>

同步练习册答案