精英家教网 > 高中数学 > 题目详情
设椭圆C1:+=1(a>b>0),抛物线C2:x2+by=b2.

(1)若C2经过C1的两个焦点,求C1的离心率;
(2)设A(0,b),Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△AMN的垂心为B(0,b),且△QMN的重心在C2上,求椭圆C1和抛物线C2的方程.
(1)  (2)+=1    x2+2y=4

解:(1)因为抛物线C2经过椭圆C1的两个焦点F1(-c,0),F2(c,0),
可得c2=b2,
由a2=b2+c2=2c2,
=,
所以椭圆C1的离心率e=.
(2)由题设可知M,N关于y轴对称,
设M(-x1,y1),N(x1,y1)(x1>0),
则由△AMN的垂心为B,有·=0.
所以-+(y1-b)(y1-b)=0.①
由于点N(x1,y1)在C2上,
故有+by1=b2.②
由①②得y1=-或y1=b(舍去),
所以x1=b,
故M(-b,-),N(b,-),
所以△QMN的重心坐标为(,).
由重心在C2上得3+=b2,
所以b=2,
M(-,-),N(,-).
又因为M,N在C1上,
所以+=1,
解得a2=.
所以椭圆C1的方程为+=1.
抛物线C2的方程为x2+2y=4.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆=1(a>b>0)的离心率为,且过点A(0,1).
 
(1)求椭圆的方程;
(2)过点A作两条互相垂直的直线分别交椭圆于点M、N,求证:直线MN恒过定点P.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.

(1)求椭圆C的标准方程;
(2)设点P为准线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

P为椭圆=1上一点,M、N分别是圆(x+3) 2+y2=4和(x-3) 2+y2=1上的点,则|PM|+|PN|的取值范围是 (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆+=1(a>b>0)与抛物线y2=2px(p>0)有相同的焦点,P、Q是椭圆与抛物线的交点,若PQ经过焦点F,则椭圆+=1(a>b>0)的离心率为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B分别为椭圆+=1(a>b>0)的左、右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,若∠DBP=,则此椭圆的离心率为(  )
(A)      (B)     (C)      (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点距离为    .

查看答案和解析>>

同步练习册答案