精英家教网 > 高中数学 > 题目详情

【题目】为了实现绿色发展,避免浪费能源,耨市政府计划对居民用电采用阶梯收费的方法.为此相关部门在该市随机调查了20户居民六月份的用电量(单位和家庭收入(单位:万元)以了解这个城市家庭用电量的情况

用电量数据如下:18,63,72,82,93,98,106,110,118,130,134,139,147,163,180,194,212,237,260,324.

对应的家庭收入数据如下:0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8.

(1)根据国家发改委的指示精神,该市计划实施3阶阶梯电价,使75%的用户在第一档,电价为0.56元/的用户在第二档,电价为0.61元/的用户在第三档,电价为0.86元/;试求出居民用电费用与用电量间的函数关系式;

(2)以家庭收入为横坐标,电量为纵坐标作出散点图(如图)关于的回归直线方程(回归直线方程的系数四舍五入保留整数)

(3)小明家的月收入7000元,按上述关系,估计小明家月支出电费多少元

参考数据

参考公式一组相关数据的回归直线方程的斜率和截距的最小二乘法估计分别为其中为样本均值

【答案】(1);(2);(3)72.8.

【解析】分析:(1)因为

所以从用电量数据中得到第一档的临界值为第15个样本,即180,

第二档的临界值为第19个样本,即260.由此,可求居民用电费用与用电量间的函数关系式;

(2)计算可得代入公式可求关于的回归直线方程

(3)把代入回归直线方程求出,再把代入(1)函数解析式即可.

,所以,小明家月支出电费72.8元.

详解:(1)因为

所以从用电量数据中得到第一档的临界值为第15个样本,即180,

第二档的临界值为第19个样本,即260.因此,

所以,

(2)由于

所以

从而回归直线方程为

(3)当时,

,所以,小明家月支出电费72.8元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆心为,定点 为圆上一点,线段上一点满足,直线上一点,满足

(Ⅰ)求点的轨迹的方程;

(Ⅱ)为坐标原点, 是以为直径的圆,直线相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线是异面直线,在平面内,在平面内,是平面与平面的交线,则下列结论正确的是( )

A. 至少与中的一条相交 B. 都不相交

C. 都相交 D. 至多与中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的左右焦点分别为,离心率.过的直线交椭圆于两点,三角形的周长为.

(1)求椭圆的方程;

(2)若弦,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业里工人的工资与其生产利润满足线性相关关系,现统计了100名工人的工资(元)与其生产利润(千元)的数据,建立了关于的回归直线方程为,则下列说法正确的是( )

A. 工人甲的生产利润为1000元,则甲的工资为130元

B. 生产利润提高1000元,则预计工资约提高80元

C. 生产利润提高1000元,则预计工资约提高130元

D. 工人乙的工资为210元,则乙的生产利润为2000元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形中, .把沿折起,使得,得到四棱锥.如图2所示.

(1)求证:面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的函数.

(1)当时,求函数在点处的切线方程;

(2)设,讨论函数的单调区间;

(3)若函数没有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案