精英家教网 > 高中数学 > 题目详情
已知直线l交椭圆4x2+5y2=80于M、N两点,椭圆与y轴的正半轴交于B点,若△BMN的重心恰好落在椭圆的右焦点上,则直线l的方程是(    )

A.5x+6y-28=0                          B.5x-6y-28=0

C.6x+5y-28=0                           D.6x-5y-28=0

解析:椭圆方程为=1,

    设M(x1,y1)、N(x2,y2),

    则=1,                             ①

=1.                                   

    两式相减得

=0.

∴kl=-.

MN的中点坐标为(),

∵△MBN的重心为(2,0),∴

∴kl=,MN的中点坐标为(3,-2).

∴l的方程为y+2=(x-3),

    即6x-5y-28=0.

答案:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S(0,
1
3
)的动直线L交椭圆C于A、B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的两焦点与短轴的一个端点的连线构成等腰直角三角形,且直线x-y+b=0是抛物线y2=4x的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点S (0, -
1
2
)
且斜率为1的直线l交椭圆C于M、N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1 (a>b>0)
的离心率e满足3, 
1
e
, 
4
9
成等比数列,且椭圆上的点到焦点的最短距离为2-
3
.过点(2,0)作直线l交椭圆于点A,B.
(1)若AB的中点C在y=4x(x≠0)上,求直线l的方程;
(2)设椭圆中心为,问是否存在直线l,使得的面积满足2S△AOB=|OA|•|OB|?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆C的离心率e=
1
2
,F1也是抛物线C1:y2=-4x的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F2的直线l交椭圆C于D,E两点,且2
DF2
=
F2E
,点E关于x轴的对称点为G,求直线GD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线交椭圆于S,T两点,交抛物线于C,D两点,且
|CD|
|ST|
=2
2

(I)求椭圆E的标准方程;
(Ⅱ)设Q(2,0),过点(-1,0)的直线l交椭圆E于M、N两点.
(i)当
QM
QN
=
19
3
时,求直线l的方程;
(ii)记△QMN的面积为S,若对满足条件的任意直线l,不等式S>λtan∠MQN恒成立,求λ的最小值.

查看答案和解析>>

同步练习册答案