精英家教网 > 高中数学 > 题目详情

【题目】(选修4-4:坐标系与参数方程)

已知圆的参数方程为为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.

【答案】的普通方程为的直角坐标方程为;(,此时点

【解析】

试题(1)根据伸缩变换公式可得的参数方程,消参可得普通方程.将先按两角和差公式展开,根据公式可将其化简为直角坐标方程.(2)根据的参数方程可设,由点到线的距离公式可求得点的距离.用化一公式将其化简可求得的最值,同时可得点的坐标.

试题解析:解:()由已知曲线的参数方程为为参数),

的普通方程为

由互化公式得的直角坐标方程为

)设点到直线的距离为

,即时,

,此时点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为菱形,且中点.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点距离与到直线的距离之比为,记动点的轨迹为.

1)求出曲线的方程,并求出的最小值,其中点

2是曲线上的动点,且直线经过定点,问在轴上是否存在定点,使得,若存在,请求出定点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论函数的单调性;

(2)当时,设的两个极值点,()恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解该校某年级学生的阅读量(分钟),随机抽取了n名学生,调查他们一天的阅读时间,统计结果下图表所示:

组号

分组

男生

人数

男生人数占本

组人数的频率

频率分布直方图

1

5

0.5

2

18

0.9

3

24

0.8

4

0.4

5

3

0.2

1)求出的值;

2天的阅时间不少于35分钟称为喜好阅读者”.根据以上数据,完成下面的列联表,并回答能否在犯错误的概率不超过0.05的前提下认为喜好阅读者性别有关?

喜好阅读者

非喜好阅读者

合计

男生

女生

合计

附:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性

(2)当时,,对任意,都有恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵中,.

(1)求证:四棱锥为阳马;

(2)若,当鳖膈体积最大时,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图.问:

(1)估计在40名读书者中年龄分布在的人数;

(2)求40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,与抛物线有公共焦点.

1)求椭圆C1与抛物线的方程;

2)已知直线是圆的一条切线,与椭圆C1交于两点,若直线斜率存在且不为,在椭圆C1上存在点,使,其中为坐标原点,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案