精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形中,的中点,点分别在线段上运动(其中不与重合,不与重合),且,沿折起,得到三棱锥,则三棱锥体积的最大值为______;当三棱锥体积最大时,其外接球的半径______.

【答案】1

【解析】

易知当平面平面时,三棱锥体积最大,此时平面.DN为几何体的高,设,则,且,再由V三棱锥D-MNQ求解,当三棱锥体积最大时,三棱锥是正三棱柱的一部分,则三棱柱的外接球即是三棱锥的外接球,设点分别是上下底面正三角形的中心,则线段的中点即是三棱柱的外接球的球心求解.

当平面平面时,三棱锥体积最大,

这时平面.

,则,且

V三棱锥D-MNQ

时,三棱锥体积最大,且.此时

为等边三角形,

∴当三棱锥体积最大时,三棱锥是正三棱柱的一部分,

如图所示:

则三棱柱的外接球即是三棱锥的外接球,

设点分别是上下底面正三角形的中心,

∴线段的中点即是三棱柱的外接球的球心

又∵是边长为2的等边三角形,

∴三棱柱的外接球的半径.

故答案为:1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为

1)写出直线和曲线的直角坐标方程;

2)过动点且平行于的直线交曲线两点,若,求动点到直线的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)已知点是曲线上的任意一点,当点到直线的距离最大时,求经过点且与直线平行的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设两点,且,若函数的图象分别在点处的两条切线互相垂直,求的最小值;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过.已知一等奖和二等奖奖品的单价分别为元、元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于人,那么下列说法中错误的是(

A.最多可以购买份一等奖奖品

B.最多可以购买份二等奖奖品

C.购买奖品至少要花费

D.共有种不同的购买奖品方案

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若当时,取得极值,求的值,并求的单调区间.

(2)存在两个极值点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:

(2)用表示中的最大值,记,讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点S为正方形ABCD所在平面外一点,△SBC是边长为2的等边三角形,点E为线段SB的中点.

1)证明:SD//平面AEC

2)若侧面SBC⊥底面ABCD,求平面ACE与平面SCD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案