精英家教网 > 高中数学 > 题目详情
17.把5张分别写有数字1,2,3,4,5的卡片混合,再将其任意排成一行,则得到的数能被2或5整除的概率是(  )
A.0.2B.0.4C.0.6D.0.8

分析 能被2或5整除的数字,个位数必须是2或4或5,只需考虑个位数字即可.

解答 解:将5个数字任意排成一行,个位数字共有1,2,3,4,5五种情况,而能被2或5整除的数字个位数共有2,4,5三种情况,∴P=$\frac{3}{5}$=0.6.
故选:C.

点评 本题考查了排列组合在概率中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.不等式x2-3x+2>0的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图所示的程序框图,输出$s=\frac{2015}{2016}$.那么判断框内应填(  )
A.k≤2015B.k≤2016C.k≥2015D.k≥2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点P是曲线y2=4x上的一个动点,则点P到点A(0,1)的距离与点P到y轴的距离之和的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{2}-1$C.$\sqrt{2}+1$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市一高中二年级在期中考试后进行了研学活动,旅行社推出6条研学路线--A:历史,B:人文,C:诗歌,D:科技,E:政风,F:探秘.
(Ⅰ)假设每条线路被选中的可能性相同,若从上述6条线路中随机选择4条线路进行研学.求历史与科技两条线路都被选中的概率;
(Ⅱ)研学结束后,学校从参加研学的所有学生中,随机抽取了100名学生参加对本次研学满意度的调查,满意度得分的统计结果如下表:
满意度得分[0,50)[50,60)[60,70)[70,80)[80,90)[90,100]
人数029265211
试估算学生对本次研学满意度的平均得分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x2-mx+3在R上存在零点,则实数m的取值范围是m≥2$\sqrt{3}$或m≤-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出以下命题:
(1)函数f(x)=$\sqrt{{x}^{2}}$与函数g(x)=|x|是同一个函数;
(2)函数f(x)=ax+1(a>0且a≠1)的图象恒过定点(0,1);
(3)设指数函数f(x)的图象如图所示,若关于x的方程f(x)=$\frac{m-1}{m+1}$有负数根,则实数m的取值范围是(1,+∞);
(4)若f(x)=$\left\{\begin{array}{l}{{2}^{x}+t(x≥0)}\\{g(x)(x<0)}\end{array}\right.$为奇函数,则f(f(-2))=-7;
(5)设集合M={m|函数f(x)=x2-mx+2m的零点为整数,m∈R},则M的所有元素之和为15.
其中所有正确命题的序号为(  )
A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(1)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的图象如图所示,若函数g(x)=3[f(x)]3-4f(x)+m在x$∈[-\frac{π}{2},\frac{π}{2}]$上有4个不同的零点,则实数m的取值范围是[$\frac{13}{8}$,$\frac{16}{9}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.实数x,y满足条件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+5≥0}\end{array}\right.$,目标函数z=3x+y的最小值为5.

查看答案和解析>>

同步练习册答案