精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=x+alnx不是单调函数,则实数a的取值范围是(-∞,0).

分析 求出函数的定义域,函数的导数,利用导数值求解a的范围.

解答 解:函数f(x)=x+alnx的定义域为:x>0.
函数f(x)=x+alnx的导数为:f′(x)=1+$\frac{a}{x}$,
当a≥0时,f′(x)>0,函数是增函数,
当a<0时,函数f(x)=x+alnx不是单调函数,则实数a的取值范围是(-∞,0).
故答案为:(-∞,0).

点评 本题考查函数的导数的应用,函数的单调性,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图所示程序框图,输出结果为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两直线y=ax+2和y=(a+2)x+1互相垂直,则a等于(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{1-a}{2}{x}^{2}+ax-lnx$(a∈R).
(Ⅰ)当a=3,求函数f(x)的极值;
(Ⅱ)当a>1,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在矩形ABCD中,AB=2,AD=3,点E为AD的中点,现分别沿BE,CE将△ABE,△DCA翻折,使得点A,D重合于F,此时二面角E-BC-F的余弦值为(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{7}}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx+(2a-1)x-ax2-a+1,
(1)若$a=\frac{1}{2}$,求f(x)的单调区间;
(2)求证:$a≥\frac{1}{2}$时,若x∈[1,+∞),则f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,其中正视图与俯视图均是半径为1的圆,则这个几何体的表面积是(  )
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)若三棱柱ABC-A1B1C1的体积为2$\sqrt{3}$,求点A到平面A1B1C1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\frac{2x}{{x}^{2}+4}$在区间(a,2a+1)上单调递增,则实数a的取值范围是(  )
A.(-1,$\frac{1}{2}$]B.[-2,$\frac{1}{2}$]C.[-1,0]D.[-1,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案