精英家教网 > 高中数学 > 题目详情

【题目】党的“十八大”之后,做好农业农村工作具有特殊重要的意义.国家为了更 好地服务于农民、开展社会主义新农村工作,派调查组到农村某地区考察.该地区有100户农 民,且都从事蔬菜种植.据了解,平均每户的年收入为6万元.为了调整产业结构,当地政府决 定动员部分农民从事蔬菜加工.据统计,若动员户农民从事蔬菜加工,则剩下的继续 从事蔬菜种植的农民平均每户的年收入有望提高,而从事蔬菜加工的农民平均每户的年收入为万元.

(1)在动员户农民从事蔬菜加工后,要使剩下户从事蔬菜种植的所有农民总年收 入不低于动员前100户从事蔬菜种植的所有农民年总年收入,求的取值范围;

(2)在(1)的条件下,要使这户农民从事蔬菜加工的总年收入始终不高于户从事蔬菜种植的所有农民年总年收入,求的最大值.(参考数据:)

【答案】(1)见解析;(2)5.46

【解析】

(1)根据题意得到解出不等式即可;(2)从事蔬菜种植的所有农民年总年收入万元,依题意得 恒成立变量分离转化为对勾函数,由函数的单调性得到最值即可.

(1)由题意得

,所以();

(2)户农民从事蔬菜加工的总年收入为万元,从事蔬菜种植的所有农民年总年收入万元,依题意得 恒成立,

恒成立,上递减,在递增, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的极值;

(Ⅱ)求证:当时,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 命题,则”的逆否命题为真命题;

B. 命题“”为假命题,则命题与命题都是假命题

C. 成立的必要不充分条件;

D. 命题存在,使得”的否定是:“对任意,均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)在直角坐标系内直接画出的图象;

2)写出的单调区间,并指出单调性(不要求证明);

3)若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,并且内切于定圆..

(1)求动圆圆心的轨迹方程;

(2)若上存在两个点,(1)中曲线上有两个点,并且三点共线,三点共线,,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.

注:年份代码分别表示对应年份.

1)由折线图看出,可用线性回归模型拟合的关系,请用相关系数线性相关较强)加以说明;

2)建立的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.

(参考数据).

(参考公式)相关系数,在回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面的中点.

(1)求证:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案