【题目】已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:
x | 0 | 40 | 60 | 120 |
Q | 0 | 20 |
(1)你认为哪一个是符合实际的函数模型,请说明理由;
(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.
(1)求圆O的方程;
(2)圆O与x轴交于E,F两点,圆O内的动点D使得DE,DO,DF成等比数列,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的一个焦点,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于直线(坐标原点),且与椭圆交于,两个不同的点,若为钝角,求直线在轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)对于函数,如果存在实数使得,那么称为的生成函数.
(1)下面给出两组函数,是否分别为的生成函数?并说明理由;
第一组:;
第二组:;
(2)设,生成函数.若不等式在上有解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆E:的离心率为,点A(2,1)是椭圆E上的点.
(1)求椭圆E的方程;
(2)过点A作两条互相垂直的直线l1,l2分別与椭圆E交于B,C两点,己知△ABC的面积为,求直线BC的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆C经过点M(2,1),N.
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,当△AMB面积取得最大值时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=﹣ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),设f(x)的导函数为f′(x),若不等式f1(x)<f′(x)<f2(x)在区间(1,+∞)上恒成立,则a的取值范围为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某集团公司计划从甲分公司中的3位员工、、和乙分公司中的3位员工、、选择2位员工去国外工作.
(1)若从这6名员工中任选2名,求这2名员工都是甲分公司的概率;
(2)若从甲分公司和乙分公司中各任选1名员工,求这2名员工包括但不包括的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com