精英家教网 > 高中数学 > 题目详情

【题目】(1)求函数f(x)= 的定义域

(2)若当x[-1,1]时,求函数f(x)=3x-2的值域.

【答案】(1)(2)

【解析】

(1)根据函数的解析式有意义,列出不等式组,即可求解函数的定义域;

(2)根据指数函数的单调性,得到函数上是单调递增函数,即可求解函数的最大值与最小值,进而得到函数的值域.

解:(1)要使函数有意义,

所以函数的定义域为

(2)∵函数f(x)=3x的底数3>1

∴函数f(x)=3xR上为增函数

∴函数f(x)=3x-2在区间[-1,1]为增函数

x=-1时,函数有最小值3-1-2=

x=1时,函数有最大值31-2=1

故当x[-1,1]时函数f(x)=3x-2的值域是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为产品的利润与投资金额的函数关系为(注:利润与投资金额单位:万元).

(1)该公司现有100万元资金,并计划全部投入两种产品中,其中万元资金投入产品,试把两种产品利润总和表示为的函数,并写出定义域;

(2)怎样分配这100万元资金,才能使公司的利润总和获得最大?其最大利润总和为多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的定义域;

(2)判断函数的奇偶性,并予以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰的底边,高,点是线段上异于点的动点,点边上,且,现沿将△折起到△的位置,使,记 表示四棱锥的体积.

(1)的表达式;(2)为何值时, 取得最大,并求最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当的成员自驾时,自驾群体的人均通勤时间是(单位:分钟),而公交群体的人均通勤时间不受影响,恒为40钟,根据上述分析结果回答下列问题:

(1)请你说明,当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆 两点,交此抛物线于 两点,其中 在第一象限, 在第二象限.

(1)求该抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C为锐角△ABC的三个内角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且
(1)求A的大小;
(2)求y=2sin2B+cos( ﹣2B)取最大值时角B的大小.

查看答案和解析>>

同步练习册答案