精英家教网 > 高中数学 > 题目详情
18.从某学习小组的5名男生和4名女生中任意选取3名学生进行视力检测,其中至少要选到男生与女生各一名,则不同的选取种数有(  )
A.35B.70C.80D.140

分析 根据题意,选用排除法;分3步,①计算从9人中,任取3人进行视力检测的选法,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.

解答 解:分3步来计算,
①从9人中,任取3人进行视力检测,分析可得,这是组合问题,共C93=84种情况;
②选出的3人都为男生时,有C53=10种情况,选出的3人都为女生时,有C43=4种情况,
③根据排除法,可得符合题意的选法共84-10-4种.
故选:B.

点评 本题考查组合数公式的运用,解本题采用排除法较为简单.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在正三棱柱ABC-A′B′C′中,D、E分别为CC′,A′B中点,CC′=$\sqrt{3}BC$.求证:
(1)直线EC′∥平面ABD;
(2)直线EC⊥平面ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若 A,B是双曲线${x^2}-\frac{y^2}{3}=1$上两个动点,且$\overrightarrow{{O}{A}}•\overrightarrow{{O}{B}}=0$,则△AOB面积的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,是否存在直线l,使其截双曲线所得弦的中点为P(1,1)?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式|2x+1|-|x-4|<6的解集为(-11,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{|x+1|,x≤0}\\{|lo{g}_{2}x|,x>0}\end{array}\right.$,若方程f(x)=a(a∈R)有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则(x1+x2)x4的取值范围是[-4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等差数列{an}中,a2=10,a4=18,则此等差数列的公差d=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.与圆(x+1)2+(y-1)2=4关于直线x-y=1对称的圆的方程是(x-2)2+(y+2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C的对边分别为a,b,c,且a+b=5,c=$\sqrt{7}$,4sin2C-8sin2$\frac{C}{2}$=1.
(Ⅰ)求角C的大小;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

同步练习册答案