É趨ÒåÔÚÇø¼ä[x1£¬ x2]Éϵĺ¯Êýy=f(x)µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OΪ×ø±êÔ­µã£¬ÉèÏòÁ¿=£¬£¬=(x£¬y)£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+(1£­¦Ë) x2ʱ£¬¼ÇÏòÁ¿=¦Ë+(1£­¦Ë)£®¶¨Òå¡°º¯Êýy=f(x)ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸¡°kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®

£¨1£©É躯Êý f(x)=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄÈ¡Öµ·¶Î§£»

£¨2£©ÇóÖ¤£ºº¯ÊýÔÚÇø¼äÉÏ¿ÉÔÚ±ê×¼k=ÏÂÏßÐÔ½üËÆ£®

£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln(e£­1)=0.541£©

¡¾½â¡¿£¨1£©ÓÉ=¦Ë+(1£­¦Ë)µÃµ½=¦Ë£¬

ËùÒÔB£¬N£¬AÈýµã¹²Ïߣ¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡­¡­¡­¡­¡­¡­¡­¡­2·Ö

ÓÖÓÉx=¦Ë x1+(1£­¦Ë) x2ÓëÏòÁ¿=¦Ë+(1£­¦Ë)£¬µÃNÓëMµÄºá×ø±êÏàͬ£® ¡­¡­¡­¡­¡­4·Ö

¶ÔÓÚ [0£¬1]Éϵĺ¯Êýy=x2£¬A(0£¬0)£¬B(1£¬1)£¬

ÔòÓУ¬¹Ê£»

ËùÒÔkµÄÈ¡Öµ·¶Î§ÊÇ£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡­¡­¡­¡­¡­¡­¡­¡­6·Ö

£¨2£©¶ÔÓÚÉϵĺ¯Êý£¬

A()£¬B()£¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡­¡­¡­¡­¡­¡­¡­¡­8·ÖÔòÖ±ÏßABµÄ·½³Ì£¬¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡¡­¡­¡­¡­¡­¡­¡­¡­10·Ö

ÁÆäÖУ¬

ÓÚÊÇ£¬¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡­¡­¡­¡­¡­¡­¡­¡­13·Ö

ÁбíÈçÏ£º

x

em

(em£¬em+1£­em)

em+1£­em

(em+1£­em£¬em+1)

em+1

+

0

£­

0

Ôö

¼õ

0

Ôò£¬ÇÒÔÚ´¦È¡µÃ×î´óÖµ£¬

ÓÖ0.123£¬´Ó¶øÃüÌâ³ÉÁ¢£® ¡¡¡¡¡¡ ¡­¡­¡­¡­¡­¡­¡­¡­16·Ö

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É趨ÒåÔÚÇø¼ä[x1£¬x2]Éϵĺ¯Êýy=f£¨x£©µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OΪ×ø±êÔ­µã£¬ÉèÏò
Á¿
OA
=£¨x1£¬f£¨x1£©£©£¬
OB
=(x2£¬  f(x2))
£¬
OM
=£¨x£¬y£©£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+£¨1-¦Ë£© x2ʱ£¬¼ÇÏòÁ¿
ON
=¦Ë
OA
+£¨1-¦Ë£©
OB
£®¶¨Òå¡°º¯Êýy=f£¨x£©ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸¡°|
MN
|¡Ü
kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®
£¨1£©É躯Êý f£¨x£©=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄÈ¡Öµ·¶Î§£»
£¨2£©ÇóÖ¤£ºº¯Êýg£¨x£©=lnxÔÚÇø¼ä[em£¬em+1]£¨m¡ÊR£©ÉÏ¿ÉÔÚ±ê×¼k=
1
8
ÏÂÏßÐÔ½üËÆ£®
£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln£¨e-1£©=0.541£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É趨ÒåÔÚÇø¼ä[x1£¬x2]Éϵĺ¯Êýy=f£¨x£©µÄͼÏóΪC£¬µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨x1£¬f£¨x1£©£©£¬£¨x2f£¨x2£©£©ÇÒM£¨x£¬f£¨x£©£©ÎªÍ¼ÏóCÉϵÄÈÎÒâÒ»µã£¬OΪ×ø±êÔ­µã£¬µ±ÊµÊý¦ËÂú×ãx=¦Ëx1+£¨1-¦Ë£©x2ʱ£¬¼ÇÏòÁ¿
ON
=¦Ë
OA
+(1-¦Ë)
OB
£®Èô|
MN
|¡Ük
ºã³ÉÁ¢£¬Ôò³Æº¯Êýy=f£¨x£©ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®
£¨¢ñ£©ÇóÖ¤£ºA¡¢B¡¢NÈýµã¹²Ïß
£¨¢ò£©É躯Êýf£¨x£©=x2ÔÚÇø¼ä[0£¬1]ÉϿɵıê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÇóÖ¤£ºº¯Êýg£¨x£©=lnxÔÚÇø¼ä£¨em£¬em+1£©£¨m¡ÊR£©ÉÏ¿ÉÔÚ±ê×¼k=
1
8
ÏÂÏßÐÔ½üËÆ£®
£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln£¨e-1£©=0.541£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010-2011ѧÄê½­ËÕÊ¡ÄÏͨÊиßÈýµÚ¶þ´ÎÄ£Ä⿼ÊÔÊýѧÊÔÌâ ÌâÐÍ£º½â´ðÌâ

É趨ÒåÔÚÇø¼ä[x1£¬ x2]Éϵĺ¯Êýy=f(x)µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OΪ×ø±êÔ­µã£¬ÉèÏò

Á¿=£¬£¬=(x£¬y)£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+(1£­¦Ë) x2ʱ£¬¼ÇÏò

Á¿=¦Ë+(1£­¦Ë)£®¶¨Òå¡°º¯Êýy=f(x)ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸

¡°kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®

£¨1£©É躯Êý f(x)=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄÈ¡Öµ·¶Î§£»

£¨2£©ÇóÖ¤£ºº¯ÊýÔÚÇø¼äÉÏ¿ÉÔÚ±ê×¼k=ÏÂÏßÐÔ½üËÆ£®

£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln(e£­1)=0.541£©

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÑïÖÝÄ£Äâ ÌâÐÍ£º½â´ðÌâ

É趨ÒåÔÚÇø¼ä[x1£¬x2]Éϵĺ¯Êýy=f£¨x£©µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OΪ×ø±êÔ­µã£¬ÉèÏò
Á¿
OA
=£¨x1£¬f£¨x1£©£©£¬
OB
=(x2£¬  f(x2))
£¬
OM
=£¨x£¬y£©£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+£¨1-¦Ë£© x2ʱ£¬¼ÇÏòÁ¿
ON
=¦Ë
OA
+£¨1-¦Ë£©
OB
£®¶¨Òå¡°º¯Êýy=f£¨x£©ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸¡°|
MN
|¡Ü
kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®
£¨1£©É躯Êý f£¨x£©=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄÈ¡Öµ·¶Î§£»
£¨2£©ÇóÖ¤£ºº¯Êýg£¨x£©=lnxÔÚÇø¼ä[em£¬em+1]£¨m¡ÊR£©ÉÏ¿ÉÔÚ±ê×¼k=
1
8
ÏÂÏßÐÔ½üËÆ£®
£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln£¨e-1£©=0.541£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨±¾Ð¡ÌâÂú·Ö16·Ö£©

É趨ÒåÔÚÇø¼ä[x1£¬ x2]Éϵĺ¯Êýy=f(x)µÄͼÏóΪC£¬MÊÇCÉϵÄÈÎÒâÒ»µã£¬OΪ×ø±êÔ­µã£¬ÉèÏò

Á¿=£¬£¬=(x£¬y)£¬µ±ÊµÊý¦ËÂú×ãx=¦Ë x1+(1£­¦Ë) x2ʱ£¬¼ÇÏò

Á¿=¦Ë+(1£­¦Ë)£®¶¨Òå¡°º¯Êýy=f(x)ÔÚÇø¼ä[x1£¬x2]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ¡±ÊÇÖ¸

¡°kºã³ÉÁ¢¡±£¬ÆäÖÐkÊÇÒ»¸öÈ·¶¨µÄÕýÊý£®

£¨1£©É躯Êý f(x)=x2ÔÚÇø¼ä[0£¬1]ÉÏ¿ÉÔÚ±ê×¼kÏÂÏßÐÔ½üËÆ£¬ÇókµÄÈ¡Öµ·¶Î§£»

£¨2£©ÇóÖ¤£ºº¯ÊýÔÚÇø¼äÉÏ¿ÉÔÚ±ê×¼k=ÏÂÏßÐÔ½üËÆ£®

£¨²Î¿¼Êý¾Ý£ºe=2.718£¬ln(e£­1)=0.541£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸