精英家教网 > 高中数学 > 题目详情
函数f(x)是定义在实数集R上的不恒为零的偶函数,f(-1)=0,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(0)+f(
1
2
)+f(1)+…+f(
2011
2
)的值是
 
考点:抽象函数及其应用,函数的值
专题:函数的性质及应用
分析:从xf(x+1)=(1+x)f(x)结构来看,要用递推的方法,先用赋值法求得,再由依此求解.
解答: 解:∵对任意实数x都有xf(x+1)=(1+x)f(x),
 当x=0时,f(0)=0,
 当x≠0时,f(x+1)=
x+1
x
f(x)
∴令x=-
1
2
,即f(
1
2
)=-f(-
1
2
),
又∵函数f(x)是定义在实数集R上的不恒为零的偶函数,
∴f(-
1
2
)=f(
1
2
),
∴f(
1
2
)=0,
令x=
1
2
,则f(
3
2
)=
1
2
+1
1
2
f(
1
2
)=0,所以可得f(
5
2
)=f(
7
2
)=…=f(
2011
2
)=0,
∵f(1)=f(-1)=0,
∵f(x+1)=
x+1
x
f(x)
∴f(1)=f(2)=f(3)=…=f(1005)=0,
所以f(0)+f(
1
2
)+f(1)+…+f(
2011
2
)=0,
故答案为:0.
点评:本题主要考查利用函数的主条件用递推的方法求函数值,这类问题关键是将条件和结论有机地结合起来,作适当变形,把握递推的规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆x2+2y2=3的焦距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,若函数y=ex+3ax(x∈R)有小于零的极值点,则(  )
A、-3<a<0
B、-
1
3
<a<0
C、a<-3
D、a<-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若等腰△ABC底边BC上的中线长为1,底角B>60°,则
BA
AC
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为2,∠BAD=60°,M为AB边上不与端点重合的动点,且CM与DA分别延长后交于点N,若以菱形的对角线所在直线为坐标轴建立平面直角坐标系,并设BM=2t (0<t<1).
(Ⅰ)试用t表示
DM
BN
,并求它们所成角的大小;
(Ⅱ)设f(t)=
DM
BN
,g(t)=at+4-2a(a>0),分别根据以下条件,求出实数a的取值范围:
①存在t1,t2∈(0,1),使得
2
f(t1)
=g(t2);
②对任意t1∈(0,1),恒存在t2∈(0,1),使得
2
f(t1)
=g(t2).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x+
3-x
的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=an+2n+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为R,f(2+x)=f(2-x),-1<x<2时,f(x)=(
1
2
x,则有(  )
A、f(-
1
2
)<f(1)<f(4)
B、f(4)<f(1)<f(-
1
2
C、f(1)<f(-
1
2
)<f(4)
D、f(1)<f(4)<f(-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax-1(a>0,a≠1)的图象必过定点
 

查看答案和解析>>

同步练习册答案