精英家教网 > 高中数学 > 题目详情
5.y=3sin($\frac{π}{2}$-x)一4sinx的最大值为5.

分析 利用两角和差的正弦公式把函数y的解析式化为5sin(x+∅),从而求得函数y的最大值.

解答 解:函数y=3sin($\frac{π}{2}$-x)一4sinx=3cosx-4sinx=5sin(x+∅),其中,cos∅=$-\frac{4}{5}$,sin∅=$\frac{3}{5}$,故函数y的最大值为5,
故答案为:5.

点评 本题考查两角和差的正弦公式,正弦函数的值域,把函数y的解析式化为5sin(x+∅),是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},则 A∩B等于(  )
A.{x|-3<x<0}B.{x|-3<x<-1}C.{x|x<-1}D.{x|-1≤x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求函数y=$\frac{\sqrt{-2{x}^{2}+x+10}}{|x|-2}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=xsinx的部分图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线y=-xsinθ+1的倾斜角的取值范围是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点P(x,y)是曲线a|x|+b|y|=1(a>0,b>0)上的动点,且满足$\sqrt{{x}^{2}+{y}^{2}+2y+1}$+$\sqrt{{x}^{2}+{y}^{2}-2y+1}$≤2$\sqrt{2}$,则a+$\sqrt{2}$b的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{2(x-6)>3-x}\\{\frac{2x-1}{3}-\frac{5x+1}{2}≤1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知,在△ABC中,∠C=90°,BC=6,AC=8,点M、N在△ABC的边上,将△ABC沿直线MN对折后,它的一个顶点正好落在对边上,且折痕MN截△ABC所成的小三角形(即对折后的重叠部分)与△ABC相似.请在下列图(不一定都用,不够可添)中分别画出折痕MN各种可能的位置,并说明画法及直接写出折痕的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=\frac{x^2}{2}-klnx$,k∈R
(1)求f(x)的单调区间;
(2)证明:当k>0时,若f(x)存在零点,则f(x)在区间$({1,\sqrt{e}}]$上仅有一个零点.

查看答案和解析>>

同步练习册答案