精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,为坐标原点.

(1)求椭圆的方程;

(2)设点在椭圆上,点在直线上,且,求证:为定值;

(3)设点在椭圆上运动,,且点到直线的距离为常数,求动点的轨迹方程.

【答案】(1);(2);(3).

【解析】试题分析:(1)由椭圆的右焦点与短轴两端点构成一个面积为的等腰直角三角形,求出,可得椭圆方程;(2)设,则的方程为:,由点坐标,可证明.(3) 设,由 ,又点在椭圆上得:,从而化简可得的轨迹方程.

试题解析:

解:(1)由条件可得

椭圆的方程为

(2)设,则的方程为:

得:

所以

(3)设,由

点在椭圆上得:

联立①②可得

可得

将③代入得:

化简得点轨迹方程为:

点睛:本题考查圆锥曲线的标准方程,曲线与方程,直线与椭圆的位置关系以及定值问题,属于中档题目.证明定值问题,先设出点坐标,根据求出直线的方程,再根据点在上求出坐标, 证明为定值,利用两点间距离公式代入坐标,根据点在曲线上两元换一元,分子分母成倍数关系,即为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当前,旅游已经成为新时期人民群众美好生活和精神文化需求的重要内容.旅游是综合性产业,是拉动经济发展的重要动力,也为整个经济结构调整注入活力.文化旅游产业研究院发布了《2019年中国文旅产业发展趋势报告》,报告指出:旅游业稳步增长,每年占国家GDP总量的比例逐年增加,如图及下表为2014年到2018年的相关统计数据.

旅游收入占国家GDP总量比例趋势

年份:

1

2

3

4

5

占比:

10.4

10.8

11.0

11.0

11.2

1)根据以上数据,求出占比关于年份的线性回归方程

2)根据(1)所求线性回归方程,预测2019年的旅游收入所占的比例.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的离心率为,右准线的方程为分别为椭圆C的左、右焦点,AB分别为椭圆C的左、右顶点.

1)求椭圆C的标准方程;

2)过作斜率为的直线l交椭圆CMN两点(点M在点N的左侧),且,设直线AMBN的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年辽宁省正式实施高考改革.新高考模式下,学生将根据自己的兴趣、爱好、学科特长和高校提供的“选考科目要求”进行选课.这样学生既能尊重自己爱好、特长做好生涯规划,又能发挥学科优势,进而在高考中获得更好的成绩和实现自己的理想.考改实施后,学生将在高二年级将面临着的选课模式,其中“3”是指语、数、外三科必学内容,“1”是指在物理和历史中选择一科学习,“2”是指在化学、生物、地理、政治四科中任选两科学习.某校为了更好的了解学生对“1”的选课情况,学校抽取了部分学生对选课意愿进行调查,依据调查结果制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的(

A.样本中的女生数量多于男生数量

B.样本中有学物理意愿的学生数量多于有学历史意愿的学生数量

C.样本中的男生偏爱物理

D.样本中的女生偏爱历史

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左,右焦点分别为,点P为双曲线C右支上异于顶点的一点,的内切圆与x轴切于点,则a的值为______,若直线经过线段的中点且垂直于线段,则双曲线C的方程为________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并据此判断甲乙两位同学的成绩谁更好?

2)将同学乙的成绩的频率分布直方图补充完整;

3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设选出的2个成绩中含甲的成绩的个数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中华文化博大精深,源远流长,每年都有大批外国游客入境观光旅游或者学习等,下面是年至年三个不同年龄段外国入境游客数量的柱状图:

下面说法错误的是:(

A.年至年外国入境游客中,岁年龄段人数明显较多

B.年以来,三个年龄段的外国入境游客数量都在逐年增加

C.年以来,岁外国入境游客增加数量大于岁外国入境游客增加数量

D.年,岁外国入境游客增长率大于岁外国入境游客增长率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五行是中国古代哲学的一种系统观,广泛用于中医、堪舆、命理、相术和占卜等方面.古人把宇宙万物划分为五种性质的事物,也即分成木、火、土、金、水五大类,并称它们为五行”.中国古代哲学家用五行理论来说明世界万物的形成及其相互关系,创造了五行相生相克理论.相生,是指两类五行属性不同的事物之间存在相互帮助,相互促进的关系,具体是:木生火,火生土,土生金,金生水,水生木.相克,是指两类五行属性不同的事物之间是相互克制的关系,具体是:木克土,土克水,水克火、火克金、金克木.现从分别标有木,火,土,金,水的根竹签中随机抽取根,则所抽取的根竹签上的五行属性相克的概率为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属不合格的零件,其中分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若一个零件的尺寸是,试判断该零件是否属于不合格的零件;

2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.

查看答案和解析>>

同步练习册答案