【题目】已知一次函数f(x)=ax-2.
(1)当a=3时,解不等式|f(x)|<4;
(2)解关于x的不等式|f(x)|<4;
(3)若关于x的不等式|f(x)|≤3对任意x∈[0,1]恒成立,求实数a的取值范围.
【答案】(1) ;(2)当a>0时,原不等式的解集为;当a<0时,原不等式的解集为;(3)[-1,5].
【解析】
(I)a=3时,f(x)=3x﹣2,然后代入|f(x)|<4,去绝对值后即可求出x的取值范围;
(II)先去绝对值,然后讨论a的符号,分别求出相应的解集即可;
(III)将若不等式|ax﹣2|≤3对任意x∈(0,1]恒成立,转化成﹣3≤ax﹣2≤3对任意x∈(0,1]恒成立,然后根据一次函数的单调性即可求出a的取值范围.
(1)当a=3时,f(x)=3x-2,
所以|f(x)|<4|3x-2|<4-4<3x-2<4
-2<3x<6-<x<2.所以原不等式的解集为.
(2)|f(x)|<4|ax-2|<4-4<ax-2<4-2<ax<6.
当a>0时,原不等式的解集为;
当a<0时,原不等式的解集为.
(3)|f(x)|≤3|ax-2|≤3-3≤ax-2≤3
-1≤ax≤5
因为x∈[0,1],所以-1≤a≤5.
所以实数a的取值范围为[-1,5].
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,⊥底面,,,,,点为棱的中点.
(1)(理科生做)证明:;
(文科生做)证明:;
(2)(理科生做)若为棱上一点,满足,求二面角的余弦值.
(文科生做)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知关于的不等式,其中.
(1)当变化时,试求不等式的解集;
(2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)的离心率是 ,过E的右焦点且垂直于椭圆长轴的直线与椭圆交于A,B两点,|AB|=2.
(Ⅰ)求椭圆方程;
(Ⅱ)过点P(0, )的动直线l与椭圆E交于的两点M,N(不是的椭圆顶点),是否存在实数λ,使 +λ 为定值?若存在,求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点M到点的距离比它到轴的距离大2,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)若直线与轨迹C恰有2个公共点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥C﹣PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,点M是PC的中点,点N在线段AB上,且MN⊥AB.
(1)求AN的长;
(2)求锐二面角P﹣NC﹣A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)= (其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是( )
A.(﹣∞,0)
B.(﹣e,e)
C.(﹣1,1)
D.(0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(I)若直线l1的倾斜角为 ,求△ABM的面积S的值;
(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com