精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且
(1)求A的大小;
(2)若 ,D是BC的中点,求AD的长.

【答案】
(1)解:由正弦定理,得:

由余弦定理可得:cosA= = =﹣

∵0<A<π,

∴A=


(2)解:将 ,代入a2=b2+c2+ bc,可得:c2+6c﹣72=0,

因为c>0,所以c=6

又∵ = ),

∴| |2= 2= (c2+2cbcosA+b2)=

所以


【解析】(1)由正弦定理,得 ,结合余弦定理可得:cosA=﹣ ,结合范围0<A<π,即可得解A的值.(2)由已知及(1)利用余弦定理可求c的值,又 = ),平方后即可得解AD的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=﹣ln(1﹣x),函数f(x)= ,若f(2﹣x2)>f(x),则x的取值范围是(
A.(﹣∞,﹣2)∪(1,+∞)
B.(﹣∞,1)∪(2,+∞)
C.(﹣2,1)
D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)= ,有下列5个结论:
①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)﹣ln(x﹣1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1 , x2 , 则x1+x2=3.
则其中所有正确结论的序号是 . (请写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有 恒成立,则不等式x2f(x)>0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin(ωx+φ)的图象向左平移 个单位.若所得图象与原图象重合,则ω的值不可能等于(
A.4
B.6
C.8
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起脚疼每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了?”根据此规律,求后3天一共走多少里(
A.156里
B.84里
C.66里
D.42里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2lnx﹣3x2﹣11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知F1、F2是椭圆G: 的左、右焦点,直线l:y=k(x+1)经过左焦点F1 , 且与椭圆G交于A、B两点,△ABF2的周长为
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)是否存在直线l,使得△ABF2为等腰直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四面体ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4 ,∠ABC=30°.
(I)求证:AC⊥BD;
(II)若二面角B﹣AC﹣D为45°,求直线AB与平面ACD所成的角的正弦值.

查看答案和解析>>

同步练习册答案