精英家教网 > 高中数学 > 题目详情
9.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,则k=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

分析 作出不等式组对应的平面区域,根据面积比是1:2,即可确定k的值.

解答 解:作出不等式组对应平面区如图(三角形ABC部分),A(0,1),B(1,-1),
∵直线y=k(x+1)过定点C(-1,0),
∴C点在平面区域ABC内,
∴点A到直线y=k(x+1)的距离d=$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$,
点B到直线y=k(x+1)的距离d=$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$,
∵直线y=k(x+1)把不等式组表示的平面区域分成上、下两部分的面积比为1:2,
∴2×$\frac{|k-1|}{\sqrt{1+{k}^{2}}}$=$\frac{|2k+1|}{\sqrt{1+{k}^{2}}}$,
解得k=$\frac{1}{4}$
故选:A

点评 本题主要考查二元一次不等式组表示平面区域以及三角形的面积的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线m,n是平面α,β外的两条直线,且m∥α,n⊥β,α⊥β,则(  )
A.m∥nB.m⊥nC.n∥αD.n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是(  )
A.$2\sqrt{2}$B.$4\sqrt{2}$C.6D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知在等比数列{an}中,a4,a8是方程x2-8x+9=0的两根,则a6为(  )
A.-3B.±3C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A={x|x≤5,x∈N},B={x|1<x<9,x∈N},则A∩B的非空子集共有15个,A∪B的真子集个数为511.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=4x上到焦点的距离等于3的点的坐标是(  )
A.(2$\sqrt{2}$,2)B.(2$\sqrt{2}$,2)或(-2$\sqrt{2}$,2)C.(2,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)或(2,-2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题p:?x0≥2,x02-2x0-2>0的否定是(  )
A.?x0≥2,x02-2x0-2<0B.?x0<2,x02-2x0-2<0
C.?x<2,x2-2x-2≤0D.?x≥2,x2-2x-2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|x<3},B={x|x>0},则A∪B=(  )
A.{x|0<x<3}B.{x|x>0}C.{x|x<3}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动点M到定点F(1,0)的距离与点M到定直线m:x=2的距离之比为$\frac{\sqrt{2}}{2}$
(1)求动点M的轨迹C的方程;
(2)设过定点A(0,2)的动直线l(斜率存在)与C相交于P,Q两点,以线段PQ为直径的圆,若定点F在此圆内,求出满足条件的直线l的斜率范围.

查看答案和解析>>

同步练习册答案