精英家教网 > 高中数学 > 题目详情
6.若二次函数f(x)=x2+mx+3+2m
(1)若函数f(x)有两个零点,其中一个零点小于0,另一零点大于5,求m的取值范围;
(2)f(x)在区间[1,7]上有最大值22,求m的取值范围.

分析 (1)利用二次函数的性质,函数的零点,列出不等式,即可求解m的范围.
(2)利用二次函数的对称轴以及函数的最值,列出不等式求解即可.

解答 解:(1)二次函数f(x)=x2+mx+3+2m,开口向上,
由图象可知$\left\{{\begin{array}{l}{f(0)<0}\\{f(5)<0}\end{array}}\right.$则m<-4 即 m∈(-∞,-4)…(6分)
(2)由题意可知$\left\{{\begin{array}{l}{-\frac{m}{2}<\frac{1+7}{2}}\\{f(7)=22}\end{array}}\right.$或$\left\{{\begin{array}{l}{-\frac{m}{2}≥4}\\{f(1)=22}\end{array}}\right.$
可得m=$-\frac{10}{3}$…(12分)(只要能够合理求出答案都给分)

点评 本题考查二次函数的性质的应用,考查计算能力,分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:
分  组频 数频 率
[0,10)0.05
[10,20)0.10
[20,30)30
[30,40)0.25
[40,50)0.15
[50,60]15
合  计n1
(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)若b=-3求圆C的方程;
(Ⅱ)满足条件的b的取值范围;
(Ⅲ)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=lg(9-x2)的定义域为(-3,3),单调递增区间为(-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是(  )
A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设θ是第三象限角,且|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,则$\frac{θ}{2}$是第四象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\vec a$,$\vec b$满足$|{\vec a}|=2$,$|{\vec b}|=2$,且$|{\vec a+\vec b}|=2\sqrt{3}$,则$\vec a$与$\vec b$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若θ∈(0,π),且sinθ+cosθ=$\frac{1}{5}$,则曲线$\frac{{x}^{2}}{sinθ}$+$\frac{{y}^{2}}{cosθ}$=1是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an},a1=1.以后各项由an=an-1+$\frac{1}{n(n-1)}$(n≥2)给出.
(1)写出数列{an}的前5项;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案