精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线内有一点,过的两条直线分别与抛物线交于两点,且满足,已知线段的中点为,直线的斜率为.

(1)求证:点的横坐标为定值;

(2)如果,点的纵坐标小于3,求的面积的最大值.

【答案】(1)见证明;(2)

【解析】

(1)中点为,根据向量的线性运算可知,且三点共线,利用点差法可得,即,可知轴,故为定值(2)得到,设,联立直线与抛物线方程可求,写出面积公式即可求最值.

(1)设中点为,则由可推得,这说明,且三点共线.

使用点差法,可得,即.

同理.

于是,即轴,所以为定值.

(2)由得到,设,联立

,所以,,

根据点到直线的距离公式知P到AB的距离为

于是,令x=,则

,令,当时, ,函数为增函数,当时,,函数为减函数,故当,即时,有最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面ABCD,底面ABCD是正方形,EPC上一点,当FDC的中点时,EF平行于平面PAD.

(Ⅰ)求证:平面PCB

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点.

1)写出抛物线的标准方程及其准线方程,并求抛物线的焦点到准线的距离;

2)过点且斜率存在的直线与抛物线交于不同的两点,且点关于轴的对称点为,直线轴交于点.

i)求点的坐标;

ii)求面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产,决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合结果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好;

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2.若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是常数).

1)若,求函数的值域;

2)若为奇函数,求实数.并证明的图像始终在的图像的下方;

3)设函数,若对任意,以为边长总可以构成三角形,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且椭圆过点,直线与圆: 相切,且与椭圆相交于两点.

1)求椭圆的方程;

2)求三角形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.华为公司研发的5G技术是中国在高科技领域的重大创新,目前处于世界领先地位,今年即将投入使用,它必将为人们生活带来别样的精彩,成为每个中国人的骄傲.现假设在一段光纤中有条通信线路,需要输送种数据包,每条线路单位时间内输送不同数据包的大小数值如表所示.若在单位时间内,每条线路只能输送一种数据包,且使完成种数据包输送的数值总和最大,则下列叙述正确的序号是_______.

①甲线路只能输送第四种数据包;

②乙线路不能输送第二种数据包;

③丙线路可以不输送第三种数据包;

④丁线路可以输送第三种数据包;

⑤戊线路只能输送第四种数据包.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)讨论的单调性;

(2)若有三个不同的零点,求的取值范围.

查看答案和解析>>

同步练习册答案