精英家教网 > 高中数学 > 题目详情

【题目】中,内角A,B,C的对边分别是a,b,c,且a2+b2ab=c2.

(1)求C;

(2)设cos Acos B=,求的值.

【答案】(1);(2)1或4.

【解析】(1)因为a2+b2ab=c2

所以由余弦定理有cos C=

.

(2)由题意得=

因此(tan αsin Acos A)(tan αsin Bcos B)=

即tan2αsin Asin Btan α(sin Acos B+cos Asin B)+cos Acos B=

即tan2αsin Asin Btan αsin(A+B)+cos Acos B= .

因为

所以A+B=

所以sin(A+B)=.

因为cos(A+B)=cos Acos Bsin Asin B,即-sin Asin B=

则sin Asin B=.

代入得tan2α5tan α+4=0,解得tan α=1或tan α=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

频数

6

24

(Ⅰ)求 的值;

(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望

(Ⅲ)某评估机构以指标,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若 恒成立,求实数的取值范围;

(Ⅲ)当时,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,点E,F分别为BC、PD的中点,若PA=AD=4,AB=2.
(1)求证:EF∥平面PAB.
(2)求直线EF与平面PCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C所对的边分别是a,b,c,且.

1)证明:sinAsinB=sinC;

2)若,求tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.

(1)求证:ACBC=ADAE;
(2)过点C作⊙O的切线交BA的延长线于点F,若AF=3,CF=9,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若 =3 ,则|QF|= , 点Q的坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国民生活水平的提高,利用长假旅游的人越来越多.某公司统计了2012到2016年五年间本公司职员每年春节期间外出旅游的家庭数,具体统计数据如下表所示:

(Ⅰ)从这5年中随机抽取两年,求外出旅游的家庭数至少有1年多于20个的概率;

(Ⅱ)利用所给数据,求出春节期间外出旅游的家庭数与年份之间的回归直线方程,判断它们之间是正相关还是负相关;并根据所求出的直线方程估计该公司2019年春节期间外出旅游的家庭数.

参考公式:

查看答案和解析>>

同步练习册答案