精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

(1);(2).

解析试题分析:(1)在区间单调递增,则恒成立.
分离变量得:,所以a大于等于的最大值即可.
(2)对,使,则应有
下面就分别求出的最大值,然后解不等式即得a的范围.
试题解析:(1)由恒成立
得: 而单调递减,从而

                   6分
(2)对,使
单调递增
          8分
单调递增,在单调递减
∴在上,
                      12分
考点:导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,
(Ⅰ)当a=4时,求函数f(x)的单调区间;
(Ⅱ)求函数g(x)在区间上的最小值;
(Ⅲ)若存在,使方程成立,求实数a的取值范围(其中e=2.71828是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求上的值域;
(2)求函数上的最小值;
(3)证明: 对一切,都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)时,求处的切线方程;
(Ⅱ)若对任意的恒成立,求实数的取值范围;
(Ⅲ)当时,设函数,若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交元的管理费,预计当每件商品的售价为元时,一年的销售量为万件.
(1)求该连锁分店一年的利润(万元)与每件商品的售价的函数关系式;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(Ⅰ)若函数在区间其中上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案