精英家教网 > 高中数学 > 题目详情

若曲线y=x3-2ax2+2ax上任意点处的切线的倾斜角都是锐角,求整数a的值.

解:∵曲线y=x3-2ax2+2ax,
∴该曲线上任意点处切线的斜率k=y′=3x2-4ax+2a.
又∵切线的倾斜角都是锐角,
∴k>0恒成立,即3x2-4ax+2a>0恒成立.
∴△=(-4a)2-4×3×2a=16a2-24a<0,
∴0<a<
又∵a∈Z,
∴a=1.
分析:求出曲线解析式y=x3-2ax2+2ax的导函数,即为曲线在任意点处切线的斜率,由切线得到倾斜角恒为锐角得到切线的斜率恒大于0,根据切线的斜率为关于x的二次函数,且为开口向上的抛物线,得到根的判别式小于0,列出关于a的不等式,求出不等式解集中的整数解即为a的值.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握不等式恒成立时所满足的条件,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-(2a+3)x+a2(a∈R)
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值
(2)若函数f(x)在区间(1,+∞)上不单调,求实数a的取值范围;
(3)求所有的实数a,使得f(x)>0对x∈[-1,1]恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:
(1)若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)在区间(-
2
3
,-
1
3
)
是减函数.
(2)如果一个数列{an}的前n项和Sn=abn+c,(a≠0,b≠1,c≠1)则此数列是等比数列的充要条件是a+c=0.
(3)曲线y=x3+x+1过点(1,3)处的切线方程为:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一个子集.则k<1.
以上四个命题中,正确命题的序号是
(1)(2)
(1)(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2-(2a+3)x+a2(a∈R)
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值
(2)若函数f(x)在区间(1,+∞)上不单调,求实数a的取值范围;
(3)求所有的实数a,使得f(x)>0对x∈[-1,1]恒成立.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省雅安中学高三(下)段考数学试卷(文科)(解析版) 题型:填空题

命题:
(1)若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)在区间是减函数.
(2)如果一个数列{an}的前n项和则此数列是等比数列的充要条件是a+c=0.
(3)曲线y=x3+x+1过点(1,3)处的切线方程为:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一个子集.则k<1.
以上四个命题中,正确命题的序号是   

查看答案和解析>>

同步练习册答案