精英家教网 > 高中数学 > 题目详情
18.M={x|ax2+bx+1>0},N={x|x2+bx+a<0},若M⊆N,则a、b间的关系是a≠0,且b2-4a≤0或a<0,且b2-4a>0,且$\left\{\begin{array}{l}{b(1-a)≥(a+1)\sqrt{{b}^{2}-4a}}\\{b(1-a)≤-(a+1)\sqrt{{b}^{2}-4a}}\end{array}\right.$,.

分析 首先,对集合M的元素组成,分两种情形进行讨论完成,

解答 解:当M={x|ax2+bx+1>0}=∅时,
此时,不等式ax2+bx+1>0的解集为空集,
∴a≠0,且△=b2-4a≤0,
∴a、b间的关系是:a≠0,且b2-4a≤0,
当M={x|ax2+bx+1>0}≠∅时,
∵M⊆N,
∴a<0,且b2-4a>0,
∴M={x|$\frac{b-\sqrt{{b}^{2}-4a}}{2(-a)}$<x<$\frac{b+\sqrt{{b}^{2}-4a}}{2(-a)}$}.
N={x|$\frac{-b-\sqrt{{b}^{2}-4a}}{2}$<x<$\frac{-b+\sqrt{{b}^{2}-4a}}{2}$},
$\left\{\begin{array}{l}{\frac{b-\sqrt{{b}^{2}-4a}}{2(-a)}≥\frac{-b-\sqrt{{b}^{2}-4a}}{2}}\\{\frac{b+\sqrt{{b}^{2}-4a}}{2(-a)}≤\frac{-b+\sqrt{{b}^{2}-4a}}{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{b(1-a)≥(a+1)\sqrt{{b}^{2}-4a}}\\{b(1-a)≤-(a+1)\sqrt{{b}^{2}-4a}}\end{array}\right.$,
∴此时,a、b间的关系是:a<0,且b2-4a>0,且$\left\{\begin{array}{l}{b(1-a)≥(a+1)\sqrt{{b}^{2}-4a}}\\{b(1-a)≤-(a+1)\sqrt{{b}^{2}-4a}}\end{array}\right.$,

点评 本题重点考查了集合之间的基本关系问题,考查了分类讨论思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知复数Z=(m2+5m+6)+(m2-2m-15)i,当实数m为何值时:
(1)Z为实数;
(2)Z为虚数
(3)Z为纯虚数;
(4)复数Z对应的点Z在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.集合A={x|m+1≤x≤m+5},B={x|1≤x≤16},使得A⊆(A∩B)成立的所有m的集合是(  )
A.{m|0≤m≤11}B.{m|11≤m或m≤0}C.{m|1≤m≤21}D.{m|11≤m≤21}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{2{x}^{2}}{x+1}$,函数g(x)=asin($\frac{π}{6}$x)-2a+2(a>0),若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,则实数a的取值范围是(  )
A.($\frac{1}{2}$,1]B.[$\frac{2}{3}$,1)C.[$\frac{2}{3}$,1]D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow{a}$=(1,1),i是虚数单位,复数(m-i)•i所对应的向量为$\overrightarrow{b}$,若$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m的值等于(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(x+$\frac{1}{2\root{3}{x}}$)n(n∈N*)的展开式中,前三项系数成等差数列,则展开式中的常数项是(  )
A.28B.70C.$\frac{7}{16}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}}$减区间为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=$\frac{\frac{1}{co{s}^{2}x}-tanx}{\frac{1}{co{s}^{2}x}+tanx}$+3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.判断函数f(x)=3x2-2x+1的单调性,并求其值域.

查看答案和解析>>

同步练习册答案