精英家教网 > 高中数学 > 题目详情
5.六个学习小组依次编号为1、2、3、4、5、6,每组3人,现需从中任选3人组成一个新的学习小组,则3人来自不同学习小组的概率为(  )
A.$\frac{5}{204}$B.$\frac{45}{68}$C.$\frac{15}{68}$D.$\frac{5}{68}$

分析 基本事件总数n=${C}_{18}^{3}$,3人来自不同学习小组包含的基本事件个数m=${C}_{6}^{3}$,由此能求出3人来自不同学习小组的概率.

解答 解:六个学习小组依次编号为1、2、3、4、5、6,每组3人,
现需从中任选3人组成一个新的学习小组,
基本事件总数n=${C}_{18}^{3}$,
3人来自不同学习小组包含的基本事件个数m=${C}_{6}^{3}$,
∴3人来自不同学习小组的概率为p=$\frac{m}{n}$=$\frac{{C}_{6}^{3}}{{C}_{18}^{3}}$=$\frac{5}{204}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}的公比为q,且q≠1,a1=2,3a1,2a2,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}是一个首项为-6,公差为2的等差数列,求数列{an+bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时.设甲、乙两人停车时间(小时)与取车概率如表所示.
  (0,2] (2,3] (3,4] (4,5]
 甲 $\frac{1}{2}$ x x x
 乙 $\frac{1}{6}$ $\frac{1}{3}$ y 0
(1)求甲、乙两人所付车费相同的概率;
(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足an+1=$\left\{\begin{array}{l}2{a_n}(0≤{a_n}<\frac{1}{2})\\ 2{a_n}-1(\frac{1}{2}≤{a_n}<1)\end{array}\right.$,若a1=$\frac{6}{7}$,则a2017=(  )
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{5}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面为矩形,PA是四棱锥的高,AP=AB=2,F是PB的中点,E是BC上的动点.
(1)证明:PE⊥AF;
(2)若BC=2BE=4$\sqrt{3}$,求直线AP与平面PDE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且B($\frac{4}{5}$,-$\frac{3}{5}$),点C在第一象限,∠AOC=α,BC=1,则cos($\frac{5π}{6}$-α)=(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若BC=2,A=60°,则$\overrightarrow{AB}$•$\overrightarrow{CA}$有(  )
A.最大值-2B.最小值-2C.最大值2$\sqrt{3}$D.最小值2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{16}=1\;(a>0)$的左、右焦点分别为F1,F2,点P在双曲线C上,如果|PF1|-|PF2|=10,那么该双曲线的渐近线方程为y=±$\frac{4}{5}$x,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求满足下列条件的直线方程:
(1)已知A(2,2)和直线l:3x+4y-20=0,求过A和直线l垂直的直线方程;
(2)求过定点P(2,3)且在两坐标轴上的截距相等的直线l的方程.

查看答案和解析>>

同步练习册答案