精英家教网 > 高中数学 > 题目详情
14.如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为α=60°,β=45°,如果此时气球的高度h是10米,则河流的宽度BC=10-$\frac{10\sqrt{3}}{3}$米.

分析 由题意画出图形,通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.

解答 解:如图,设过A作BC的垂线,垂足为D,则∠DAB=30°,
∴BD=$\frac{10\sqrt{3}}{3}$.
在Rt△ADC中,又AD=10,∠DAC=45°,∴DC=10,
∴BC=DC-DB=10-$\frac{10\sqrt{3}}{3}$(m).
∴河流的宽度BC等于(10-$\frac{10\sqrt{3}}{3}$)m.
故答案为10-$\frac{10\sqrt{3}}{3}$.

点评 本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知命题p:?x∈R,x<-1,则该命题的否定是¬p:?x∈R,x≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2$\sqrt{5}$,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的顶点到渐近线的距离为(  )
A.1B.2C.$\frac{2\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ 2x+y≥0\\ 3x-y-2≤0\end{array}\right.$,则$\frac{y}{1-x}$的取值范围为(  )
A.$({-∞,-\frac{4}{3}}]$B.$({-∞,\frac{3}{4}})$C.$[{-\frac{3}{4},+∞})$D.$[{-\frac{4}{3},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别是A,B,C的对边,且满足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分线与BC相交于D点,AD=AC,BD=2求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x,y满足约束条件$\left\{\begin{array}{l}{|x-2y+2|≤2}\\{|x+3y-8|≤2}\end{array}\right.$,则z=x+2y的最大值为(  )
A.4B.8C.$\frac{24}{5}$D.$\frac{36}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的等比数列{an}的前n项和为Sn,若a5=2a3+a4,且S5=62
(1)求数列{an}的通项公式
(2)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\frac{{sin({A+B})}}{a+b}=\frac{sinA-sinB}{a-c}$,b=3.
(Ⅰ)求角B;
(Ⅱ)若$cosA=\frac{{\sqrt{6}}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{1-x}{x}$≤0的解集为{x|x<0,或x≥1 }.

查看答案和解析>>

同步练习册答案