【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点.
(1)求证:PA∥平面EDB;
(2)求锐二面角C﹣PB﹣D的大小.
【答案】
(1)解法一:如图,以D为坐标原点,分别以 所在的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系D﹣xyz.
则A(2,0,0),P(0,0,2),D(0,0,0),B(2,2,0),C(0,2,0),E(0,1,1).
法一: .
设 ,即(2,0,﹣2)=λ(2,2,0)+μ(0,1,1).
解得λ=1,μ=﹣2.
所以 .
又PA平面EDB,所以PA∥平面EDB.
法二:取BD的中点G,则G(1,1,0). , .
所以 ,所以PA∥EG.
又PA平面EDB,EG平面EDB,
所以PA∥平面EDB.
法三: .
设 =(x,y,z)为平面EDB的一个法向量,
则 ,即2x+2y=0,y+z=0.
取y=﹣1,则x=z=1.于是 =(1,﹣1,1).
又 ,所以 .所以 .
又PA平面EDB,所以PA∥平面EDB.
解法二:连接AC,设AC∩BD=G.
因为ABCD是正方形,所以G是线段AC的中点.
又E是线段PC的中点,所以,EG是△PAC的中位线.
所以PA∥EG.
又PA平面EDB,EG平面EDB,
所以PA∥平面EDB.
(2)解法一:由(1)中的解法一, , .
设 =(x1,y1,z1)为平面CPB的一个法向量,
则 , .
取y1=1,则z1=1.于是 =(0,1,1).
因为ABCD是正方形,所以AC⊥BD.
因为PD⊥底面ABCD,所以PD⊥AC.
又PD∩BD=D,所以AC⊥平面PDB.
所以 是平面PDB的一个法向量.
所以
所以,锐二面角C﹣PB﹣D的大小为60°.
解法二:如图,设AC∩BD=G.
在Rt△PDB中,过G作GF⊥PB于F,连接FC.
因为四边形ABCD是正方形,
所以CA⊥BD,即CG⊥BD.
因为侧棱PD⊥底面ABCD,CG平面ABCD,
所以CG⊥PD.
又CG⊥BD,PD∩BD=D,所以CG⊥平面PDB.
所以CG⊥PB.
又PB⊥GF,CG∩GF=G,所以PB⊥平面CGF.
所以PB⊥FC.从而∠GFC就是二面角C﹣PB﹣D的一个平面角
在Rt△PDB中, .
在Rt△FGC中, .所以∠GFC=60°.
所以二面角C﹣PB﹣D的大小为60°
【解析】(1)解法一:以D为坐标原点,分别以 所在的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系D﹣xyz.求出相关点的坐标.法一,推出 .然后证明PA∥平面EDB.法二:取BD的中点G,则G(1,1,0),利用 ,说明PA∥EG.证明PA∥平面EDB.法三:求出平面EDB的一个法向量 ,证明 ,推出PA∥平面EDB.解法二:连接AC,设AC∩BD=G.证明PA∥EG.然后证明PA∥平面EDB.(2)解法一:由(1)中的解法一,求出平面CPB的一个法向量 ,证明AC⊥BD.PD⊥AC.推出AC⊥平面PDB.求出平面PDB的一个法向量,利用空间向量的数量积求解锐二面角C﹣PB﹣D的大小.解法二:过G作GF⊥PB于F,连接FC.说明∠GFC就是二面角C﹣PB﹣D的一个平面角通过求解三角形即可.
科目:高中数学 来源: 题型:
【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示的圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形的圆心角均为,边界忽略不计)即为中奖.
乙商场:从装有2个白球、2个蓝球和2个红球(这些球除颜色外完全相同)的盒子中一次性摸出2球,若摸到的是2个相同颜色的球,则为中奖.
试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,当x=时,y最大值1,当x=时,取得最小值-1
(1)求y=f(x)的解析式;
(2)写出此函数取得最大值时自变量x的集合和它的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆: 的长轴为,过点的直线与轴垂直,椭圆上一点与椭圆的长轴的两个端点构成的三角形的最大面积为2,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2) 设是椭圆上异于, 的任意一点,连接并延长交直线于点, 点为的中点,试判断直线与椭圆的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,圆C的方程为 (θ为参数).以坐标原点O为极点, 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,直线的极坐标方程.
(Ⅰ)当时,判断直线与的关系;
(Ⅱ)当上有且只有一点到直线的距离等于时,求上到直线距离为的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左右焦点分别为, ,左顶点为,上顶点为, 的面积为.
(1)求椭圆的方程;
(2)设直线: 与椭圆相交于不同的两点, , 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
产品质量/克 | 频数 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |
甲流水线样本频数分布表:
甲流水线 | 乙流水线 | 总计 | |
合格品 | |||
不合格品 | |||
总计 |
(1)根据上表数据作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从乙流水线任取件产品,该产品恰好是合格品的概率;
(3)由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装质量与两条自动包装流水线的选择有关?
附表:
(参考公式: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)的上、下焦点分别为F1 , F2 , 点D在椭圆上,DF2⊥F1F2 , △F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.
(1)求椭圆E与抛物线C的方程;
(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com