精英家教网 > 高中数学 > 题目详情
已知点M(0,1,-2),平面π过原点,且垂直于向量
n
=(1,-2,2)
,则点M到平面π的距离为(  )
分析:确定
MO
MO
n
,利用点M到平面π的距离为d=
MO
n
|
n
|
,即可求得结论.
解答:解:由题意,
MO
=(0,-1,2),|
n
|=
1+4+4
=3
MO
n
=0+2+4=6
MO
n
的夹角为α,则
MO
n
=|
MO
||
n
|cosα
 
∴点M到平面π的距离为d=|
MO
|cosα=
MO
n
|
n
|
=2
故选B.
点评:本题考查空间向量,考查点到面的距离的计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M(0,-1),点N在直线x-y+1=0,若直线MN垂直于直线x+2y-3=0,则N点坐标是
(2,3)
(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点 M(0,-1),F(0,1),过点M的直线l与曲线y=
13
x3-4x+4
在x=-2处的切线平行.
(1)求直线l的方程;
(2)求以点F为焦点,l为准线的抛物线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C与椭圆
x2
8
+
y2
4
=1有相同的焦点,直线y=
3
3
x为C的一条渐近线.
(1)求双曲线C的方程;
(2)已知点M(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点,求
MP
MQ
的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
=-2
成立.
(3)设动点P满足
MP
=
OA
+
OB
,当a=-2,m变化时,求|OP|的取值范围.

查看答案和解析>>

同步练习册答案