精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°
(I)求证:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.

【答案】
证明:(Ⅰ)取AD的中点E,连接PE,BE,BD.
∵PA=PD=DA,四边形ABCD为菱形,且∠BAD=60°,
∴△PAD和△ABD为两个全等的等边三角形,
则PE⊥AD,BE⊥AD,∴AD⊥平面PBE,
又PB平面PBE,∴PB⊥AD;
(Ⅱ)解:在△PBE中,由已知得,PE=BE=,PB=,则PB2=PE2+BE2
∴∠PEB=90°,即PE⊥BE,又PE⊥AD,∴PE⊥平面ABCD;
以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,
则E(0,0,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,),
=(1,0,),=(﹣1,,0),
由题意可设平面APD的一个法向量为=(0,1,0);
设平面PDC的一个法向量为=(x,y,z),
由 得:
令y=1,则x=,z=﹣1,∴=(,1,﹣1);
=1,∴cos<,>===
由题意知二面角A﹣PD﹣C的平面角为钝角,
所以,二面角A﹣PD﹣C的余弦值为﹣

【解析】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD.证明AD⊥平面PBE,然后证明PB⊥AD;
(Ⅱ)以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,求出平面APD的一个法向量为=(0,1,0),平面PDC的一个法向量为 , 利用向量的数量积求解二面角A﹣PD﹣C的余弦值.
【考点精析】解答此题的关键在于理解直线与平面垂直的性质的相关知识,掌握垂直于同一个平面的两条直线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G.
(1)求证:△EFG为等腰三角形;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρ(sinθ+cosθ)=3 , 射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于回归分析的说法中错误的有( )

(1). 残差图中残差点所在的水平带状区域越宽则回归方程的预报精确度越高.

(2). 回归直线一定过样本中心

(3). 两个模型中残差平方和越小的模型拟合的效果越好

(4) .甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+ax2﹣3ax+1的图象经过四个象限,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,当a时,有成立.

在区间1上的最大值;

若对任意的都有,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二面角α﹣l﹣β为60°,ABα,AB⊥l,A为垂足,CDβ,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥,底面为边长为2的正三角形,侧棱,

(1)求证:

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆 的离心率为,长轴长为4,过椭圆的左顶点作直线,分别交椭圆和圆于相异两点

(1) 若直线的斜率为1,求的值:

(2) 若,求实数的取值范围.

查看答案和解析>>

同步练习册答案