【题目】若函数为上的奇函数,且当时,.
(1)求在的解析式;
(2)若,,试讨论取何值时,零点的个数最多?最少?
科目:高中数学 来源: 题型:
【题目】2018年2月22日.在平昌冬奥会短道速滑男子500米比赛中.中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况.收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人.已知这20位女生的数据茎叶图如图所示.
(1)将这20位女生的时间数据分成8组,分组区间分别为,在答题卡上完成频率分布直方图;
(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;
(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20小时的男生有50人请完成答题卡中的列联表,并判断是否有99 %的把握认为“该校学生观看冬奥会累计时间与性别有关”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的定义域;
(2)若函数有且仅有一个零点,求实数m的取值范围;
(3)任取,若不等式对任意恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了个网箱,测量各箱水产品的产量(单位:),其频率分布直方图如下:
(1)网箱产量不低于为“理想网箱”,填写下面列联表,并根据列联表判断是否有的把握认为“理想网箱”的数目与养殖方法有关:
箱产量 | 箱产量 | 合计 | |
旧养殖法 | |||
新养殖法 | |||
合计 |
(2)已知旧养殖法个网箱需要成本元,新养殖法个网箱需要增加成本元,该水产品的市场价格为元/,根据箱产量的频率分布直方图(说明:同一组中的数据用该组区间的中间值作代表),采用哪种养殖法,请给养殖户一个较好的建议,并说明理由.
附参考公式及参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.
(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;
(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时间著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异”.意思是:夹在两平行平面间的两个几何体,被平行于这两个平行平面的任何平面所载,若截得的两个截面面积总相等,则这两个几何体的体积相等.为计算球的体积,构造一个底面半径和高都与球半径相等的圆柱,然后再圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,运用祖暅原理可证明此几何体与半球体积相等(任何一个平面所载的两个截面面积都相等).将椭圆 绕 轴旋转一周后得一橄榄状的几何体,类比上述方法,运用祖暅原理可求得其体积等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱ABC-A1B1C1,侧面ABB1A1为菱形,侧面ACC1A1为正方形,侧面ABB1A1⊥侧面ACC1A1.
(1)求证:A1B⊥平面AB1C;
(2)若AB=2,∠ABB1=60°,求三棱锥C1-COB1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, 椭圆的中心在坐标原点,其右焦点为,且点 在椭圆上.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为,是椭圆上异于的任意一点,直线交椭圆于另一点,直线交直线于点, 求证:三点在同一条直线上
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com