【题目】设函数,其中.
(1)当时,的零点个数;
(2)若的整数解有且唯一,求的取值范围.
【答案】(1)只有一个零点(2)
【解析】
(1)求导,根据导数求函数的单调性,结合极值即可判断;(2)易发现,再分和根据导数与函数单调性的关系讨论题设成立时的取值范围,求交集即可.
解:(1),当时,,函数单增,
且时函数值都已经大于0了;当时,,函数单减,
且,所以只有一个零点
(2)观察发现,下证除整数0外再无其他整数 ,
①当时,,根据同向不等式乘法得到,因为,
所以,所以函数单增,且趋于时函数值显然很大很大;
但要保证只有唯一整数0,需要,却发现恒成立,
②当时,要保证只有唯一整数0,首先需要,得到
当时,,根据同向不等式得到,又因,
所以,所以函数在单减,且
综上所述:的整数解有且唯一时,
科目:高中数学 来源: 题型:
【题目】在四棱锥中,平面,,点是矩形内(含边界)的动点,且,,直线与平面所成的角为.记点的轨迹长度为,则______;当三棱锥的体积最小时,三棱锥的外接球的表面积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.
有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.
(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?
爱付费用户 | 不爱付费用户 | 合计 | |
年轻用户 | |||
非年轻用户 | |||
合计 |
(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:
(1)估计该校男生的人数;并求出值
(2)估计该校学生身高在之间的概率;
(3)从样本中身高在之间的女生中任选2人,求至少有1人身高在之间的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—5: 不等式选讲
已知函数f(x)= 的定义域为R.
(Ⅰ)求实数m的取值范围;
(Ⅱ)若m的最大值为n,当正数a,b满足 =n时,求7a+4b的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com