精英家教网 > 高中数学 > 题目详情
把函数y=lnx-2的图像按向量a=(-1,2)平移得到函数y=f(x)的图像.

(Ⅰ)若x>0,证明:f(x)>

(Ⅱ)若不等式x2≤f(x2)+m2-2bm-3时x∈[-1,1]和b∈[-1,1]都恒成立,求实数m的取值范围.

(Ⅰ)由题设得f(x)=ln(x+1)

令g(x)=f(x)- ln(x+1)-,则

g′(x)=.

∵x>0, ∴g′(x)>0,

∴g(x)在(0,+∞)上是增函数.

故g(x)>g(0)=0,即f(x)>.

(Ⅱ)原不等式等价于x2-f(x2)≤m2-2bm-3.

令h(x)= x2-f(x2)= x2-ln(1+x2),则

h(x)=x-

令h(x)=0,得x=0,x=1,x=-1.列表如下:

x

-1

(-1,0)

0

(0,1)

1

h(x)

0

+

0

-

0

h′(x)

极小值-ln2

极大值0

极小值-ln2

∴当x∈[-1,1]时,h(x)max=0,

∴m2-2bm-3≥0

令Q(b)=-2mb+m2-3,则

解得m≤-3或m≥3.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把函数y=lnx-2的图象按向量
a
=(-1,2)
平移得到函数y=f(x)的图象.
(I)若x>0,试比较f(x)与
2x
x+2
的大小,并说明理由;
(II)若不等式
1
2
x2≤f(x2)+m2-2bm-3
.当x,b∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=lnx-2的图象按向量
α
=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>
2x
x+2

(2不等式
1
2
x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把函数y=lnx-2的图象按向量数学公式=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>数学公式
(2不等式数学公式x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=lnx-2的图象按向量a=(-1,2)平移得到函数y=f(x)的图象.

(1)若x>0,证明:f(x)>

(2)若不等式x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年黄冈中学河南学校高三(上)第一次调研数学试卷(解析版) 题型:解答题

把函数y=lnx-2的图象按向量=(-1,2)平移得到函数y=f(x)的图象.
(1)若x>0,证明;f(x)>
(2不等式x2≤f(x2)+m2-2bm-3对b∈[-1,1],x∈[-1,1]时恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案