精英家教网 > 高中数学 > 题目详情
(2007•河东区一模)已知公差不为零的等差数列{xn}和等比数列{yn}中,x1=y1=1,x2=y2,x6=y3.是否存在常数a、b,使得对于一切正整数n,都有xn=logayn+b成立?如果存在,求出a和b的值;如果不存在,请说明理由.
分析:设{xn}的公差为d且{yn}的公比为q,根据题中等式建立关于d、q的方程组,解出d=3且q=4,从而得出xn=3n-2,yn=4n-1.若存在实数a和b使得xn=logayn+b成立,可得3n-2=loga4n-1+b,化简即(3-loga4)•n+(loga4-b-2)=0恒成立,采用比较系数法建立关于a、b的方程组,即得存在常数a=
34
,b=1,满足题设条件.
解答:解:设等差数列{xn}的公差为d,等比数列{yn}的公比为q,则
x1=1,x2=1+d,x6=1+5d;y1=1,y2=q,y2=q2,----------4分
∵x2=y2,x6=y3
∴1+d=q,1+5d=q2,解得d=3且q=4或d=0且q=1(不符合题意舍去)
∴xn=1+(n-1)d=1+3(n-1)=3n-2,yn=y1•qn-1=1•4n-1=4n-1.----------9分
若存在实数a和b,使得xn=logayn+b成立(n∈N*),
则3n-2=loga4n-1+b,(n∈N*
即有(3-loga4)•n+(loga4-b-2)=0恒成立,----------12分
3-loga4=0
log a4-b-2=0
,解之得a=
34
,b=1
∴存在常数a=
34
,b=1,满足题设条件.-----------14分.
点评:本题给出等差数列与等比数列,在它们的对应项相等的情况下求通项公式并讨论一个等式恒成立的问题.着重考查了等差等比数列的通项公式、恒等式的成立和二元方程组的解法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•河东区一模)已知F1,F2是双曲线
x2
2
-y2=1的左、右焦点,P、Q为右支上的两点,直线PQ过F2,则|PF1|+|QF1|-|PQ|的值为
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)在约束条件
0≤x≤2
0≤y≤2
y-x≥1
下,z=4-2x+y的最大值是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)函数 y=
x2+2
(x≤0)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)△ABC的内角满足sinA+cosA>0,tanA-sinA<0,则A的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)椭圆与双曲线
x2
5
-y2=1有共同的焦点,且一条准线的方程是x=3
6
,则此椭圆的方程为(  )

查看答案和解析>>

同步练习册答案