【题目】设点P是曲线y=x3﹣ x+ 上的任意一点,点P处的切线倾斜角为α,则α的取值范围为 .
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,,,平面ABC.
若,求直线与平面所成的角的大小;
在的条件下,求二面角的大小;
若,平面,G为垂足,令其中p、q、,求p、q、r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂有两台不同机器A和B生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格将这组数据的频率视为整批产品的概率.
Ⅰ从等级为优秀的样本中随机抽取两件,记X为来自B机器生产的产品数量,写出X的分布列,并求X的数学期望;
Ⅱ完成下列列联表,以产品等级是否达到良好以上含良好为判断依据,判断能不能在误差不超过的情况下,认为B机器生产的产品比A机器生产的产品好;
A生产的产品 | B生产的产品 | 合计 | |
良好以上含良好 | |||
合格 | |||
合计 |
已知优秀等级产品的利润为12元件,良好等级产品的利润为10元件,合格等级产品的利润为5元件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器你认为该工厂会仍然保留原来的两台机器吗?
附:独立性检验计算公式:.
临界值表:
k |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列的前项和为,,且,,成等差数列,数列满足.
(1)求数列的通项公式;
(2)设,数列的前项和为,若对任意,不等式 恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+bx2+cx﹣1当x=﹣2时有极值,且在x=﹣1处的切线的斜率为﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[﹣1,2]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为( )
A.y= ﹣ x
B.y= x3﹣ x
C.y= x3﹣x
D.y=﹣ x3+ x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+bx(a,b∈R)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.
(1)求a,b的值;
(2)当x>1时,f(x)+ <0恒成立,求实数k的取值范围;
(3)证明:当n∈N* , 且n≥2时, + +…+ > .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com