精英家教网 > 高中数学 > 题目详情

【题目】设点P是曲线y=x3 x+ 上的任意一点,点P处的切线倾斜角为α,则α的取值范围为

【答案】[0°,90°]∪[120°,180°)
【解析】解:设点P是曲线 上的任意一点,
∴y'=3x2
∴点P处的切线的斜率k=3x2
∴k
∴切线的倾斜角α的范围为:[0°,90°]∪[120°,180°)
所以答案是:[0°,90°]∪[120°,180°)
【考点精析】本题主要考查了简单复合函数的导数和直线的倾斜角的相关知识点,需要掌握复合函数求导:,称则可以表示成为的函数,即为一个复合函数;当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α=0°才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面ABC

,求直线与平面所成的角的大小;

的条件下,求二面角的大小;

平面G为垂足,令其中pq,求pqr的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两台不同机器AB生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格将这组数据的频率视为整批产品的概率.

从等级为优秀的样本中随机抽取两件,记X为来自B机器生产的产品数量,写出X的分布列,并求X的数学期望;

完成下列列联表,以产品等级是否达到良好以上含良好为判断依据,判断能不能在误差不超过的情况下,认为B机器生产的产品比A机器生产的产品好;

A生产的产品

B生产的产品

合计

良好以上含良好

合格

合计

已知优秀等级产品的利润为12元件,良好等级产品的利润为10元件,合格等级产品的利润为5元件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器你认为该工厂会仍然保留原来的两台机器吗?

附:独立性检验计算公式:

临界值表:

k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的前项和为,且成等差数列,数列满足

(1)求数列的通项公式;

(2)设,数列的前项和为,若对任意,不等式 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx﹣1当x=﹣2时有极值,且在x=﹣1处的切线的斜率为﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[﹣1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+bx(a,b∈R)在点(1,f(1))处的切线方程为x﹣2y﹣2=0.
(1)求a,b的值;
(2)当x>1时,f(x)+ <0恒成立,求实数k的取值范围;
(3)证明:当n∈N* , 且n≥2时, + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知,且,求证:

(2)解关于的不等式:

查看答案和解析>>

同步练习册答案