精英家教网 > 高中数学 > 题目详情

【题目】某工厂生产产品件的总成本(万元).已知产品单价(万元)与产品件数满足,生产100件这样的产品单价为50万元.

(1)设产量为件时,总利润为(万元),求的解析式;

(2)产量定为多少时总利润(万元)最大?并求最大值.

【答案】(1))(2)产量定为25件时,总利润(万元)最大,最大值为875万元.

【解析】分析:(1)根据题意可求出,进而得出总利润为为总卖价减去总成本;
(2)根据利润表达式,求出导函数,利用导函数得出函数的极值,进而求出函数的最大值.

详解:

(1)由产品单价(万元)与产品件数满足:

生产100件这样的产品单价为50万元,得

,即

(2)由

时,单调递增;

时,单调递减;

因此当时,取得最大值,且最大值为(万元)

故产量定为25件时,总利润(万元)最大,最大值为875万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数其图像的一个对称中心是的图像向左平移个单位长度后得到函数的图像。

(1)求函数的解析式;

(2)若对任意时,都有求实数的最大值;

(3)若对任意实数上与直线的交点个数不少于6个且不多于10个,求正实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.

(I)求证:PB∥平面FAC;

(II)求三棱锥P-EAD的体积;

(III)求证:平面EAD⊥平面FAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于函数的判断正确的是(  )

的解集是

极小值,是极大值;

没有最小值,也没有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟在一个U形水面PABQ(∠A=B=90°)上修一条堤坝(EAP上,NBQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点EN2条分隔线MEMN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=aEM=BM,∠MEN=90°,设所拉分隔线总长度为l

1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;

2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)若直线过点,求直线的极坐标方程;

(2)若直线与曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(
A.f(x)=
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四面体ABCD及其三视图(如图2所示),过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.

(1)证明:四边形EFGH是矩形;
(2)求直线AB与平面EFGH夹角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,, 平面,Q是AD的中点,M是棱PC上的点,.

(1)求证:平面

(2)若平面QMB与平面PDC所成的锐二面角的大小为,求的长.

查看答案和解析>>

同步练习册答案