精英家教网 > 高中数学 > 题目详情
6.在△ABC中,内角A、B、C的对边分别为a、b、c,且b2=a2+bc,A=$\frac{π}{6}$,D点在边AC上,当线段BD的长最小,则$\frac{CD}{AB}$=$\frac{1}{2}$.

分析 由余弦定理可得a2=b2+c2-2bccos$\frac{π}{6}$,而b2=a2+bc,可得c=($\sqrt{3}$-1)b,a2=(2-$\sqrt{3}$)b2,利用余弦定理得出C,线段BD的长最小,BD⊥AC,则AB=2BD,CD=BD,即可得出结论.

解答 解:由余弦定理可得a2=b2+c2-2bccos$\frac{π}{6}$=b2+c2-$\sqrt{3}$bc,
∵b2=a2+bc,
∴bc+c2-$\sqrt{3}$bc=0,
解得c=($\sqrt{3}$-1)b,
a2=b2-bc=(2-$\sqrt{3}$)b2
∴解得:cosC=$\frac{\sqrt{2}}{2}$,
∵c<b,
∴C为锐角,C=$\frac{π}{4}$.
当线段BD的长最小,BD⊥AC,则AB=2BD,CD=BD,
∴$\frac{CD}{AB}$=$\frac{1}{2}$
故答案为:$\frac{1}{2}$

点评 本题考查了余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某商品的进价是40元/kg,现在的售价是60元/kg,每周可卖出300kg.根据市场调查,该商品每涨价1元,每周要少卖出10kg;每降价1元,每周可多卖出20kg.如果要对该商品涨价,那么涨价的范围是多少才能使每周的利润不少于6240元?如果要对该商品降价,那么降价的范围是多少才能使每周的利润不少于6240元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,tan$\frac{A+B}{2}$=2sinC,若$\frac{a+sinA}{b+sinB}$=$\frac{3}{2}$,则tanB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知角α的终边在直线y=x上,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.条件p:|x一2|>3.条件q:|x-a|>x-a.若q是p的充分条件.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的定义域.
(1)y=lg($\frac{\sqrt{2}}{2}$-sinx).
(2)y=$\sqrt{3tanx-\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.利用三角函数线,求满足下列条件的α的范围.
(1)sinα<-$\frac{1}{2}$;
(2)cosα>$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,上项点为B,M(1,0),N(n,0),|MB|=$\sqrt{2}$,|AM|=3.过点M作直线l(与x轴不重合),直线l与椭圆C相交于P,Q两点,且有NP⊥NQ.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\left\{{\begin{array}{l}{3{x^2}-4,x>0}\\{2,x=0}\\{-1,x<0}\end{array}}\right.$,则f(f(1))=-1.

查看答案和解析>>

同步练习册答案